Чувствительный элемент люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде и способ его получения

Изобретение относится к области оптического детектирования веществ в газовой среде и касается чувствительного элемента люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде. Чувствительный элемент состоит из поливиниленовой полимерной матрицы из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, содержащей в качестве фотоактивного компонента коллоидные полупроводниковые люминофоры, включающие ядро на основе селенида кадмия и полупроводниковые оболочки на основе сульфида кадмия и сульфида цинка. Технический результат заключается в повышении селективности чувствительного элемента. 2 н. и 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к средствам, материалам и устройствам, предназначенным для оптического детектирования веществ в газовой среде, и может быть использовано в экологии, медицине, биохимии и других отраслях техники. В частности, к изготовлению чувствительного элемента люминесцентного сенсора, состоящего из полимерной матрицы, содержащей в качестве фотоактивного компонента коллоидные полупроводниковые люминофоры, для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде и способу его изготовления.

Сенсор представляет собой устройство, определяющее или измеряющее физическое свойство и, тем или иным способом, регистрирующее результат измерения. Типичный люминесцентный сенсор состоит из химического селективного слоя сенсора -чувствительного элемента, дающего отклик на присутствие определяемого компонента и изменение его содержания, и трансдьюсера, который преобразует энергию, возникающую в ходе реакции чувствительного слоя с определяемым компонентом, в электрический или световой сигнал, который, затем, измеряется с помощью светочувствительного и/или электронного устройства. Этот сигнал и является аналитическим, поскольку дает прямую информацию о составе среды (раствора или газа). Для повышения избирательности на входном устройстве люминесцентного сенсора (перед чувствительным слоем) могут размещаться мембраны, селективно пропускающие частицы определяемого компонента. В этом случае, определяемое вещество диффундирует через полупроницаемую мембрану к тонкому слою химического преобразователя, в котором формируется аналитический сигнал на компонент.

Из уровня техники известен фотометрический метод анализа брома в газовой фазе и растворах с применением соединений дающих с бромом окрашенные соединения: кристаллическим фиолетовым, родамином 6Ж, флуоресцеином, фуксинсернистой кислотой, фуксином и некоторыми др. красителями (Fresenius W., Janger G. «Handbuch der analytischen Chemie» Berlin. Springerverl., 1967). Метод требует сложной пробоподготовки, связанной с предварительной экстракцией брома зефирамином.

Для определения бромсодержащих огранических соединений применяются методы по Бейльштейну с использованием пробы Файгля, основанные на выделении свободного брома и его последующем обнаружении по реакции окисления диметиламинобензофеноном, переходящим в хиноидный катион синего цвета. (Файгль Ф. «Капельный анализ органических веществ», М.: Госхимиздат, 1962).

Известен титриметрический метод определения молекулярного брома, основанный на проведении окислительно-восстановительной реакции. Метод основан на реакции брома с пероксидом водорода в щелочной среде в растворе (Rupp at all. «Arch. Parm», 1994, V. 262, N3). Метод связан с использованием растворов или с пропусканием анализируемого воздуха через раствор.

Известны фотометрические методы анализа брома, особенностью которых является предварительное окисление или восстановление бромсодержащих соединений до молекулярного брома, который определяют по светопоглощению. Так, известен фотометрический метод определения молекулярного брома в газовой фазе по оптической плотности на длинах волн 416 или 418 нм (Egle R.A. Z. «Anal. Chem.» 1964, V. 247, P. 39).

Для определения равновесных концентраций Br2 и BrCl предложен метод (Остапенко Л.Ф. и др. «Докл. АН СССР», 1974, Т. 215, С. 1387), основанный на измерении оптической плотности смеси при 330, 376 и 420 нм. При определении брома в растворах были предложены методы, связанные с выделением брома под действием хлора (Залкинд Г.Р. «Йодобромная промышленность», ГИПХ, 1974, С. 3). Недостатком описанных выше методов является низкая чувствительность, а также сложный и многостадийный процесс пробоподготовки, требующий использования специализированной химической лаборатории.

Флуоресцентные методы определение брома преимущественно основаны на образовании под действием брома тетрабромфлуоресцеина при значении РН 5,5-5,6 и последующем измерении оптической плотности раствора при 525 нм (Hils A. «Dtsch. Lebensmittelrdsch», 1974, V. 70, Р. 285). Следует отметить, что для данного метода характерна низкая воспроизводимость определения.

Существуют методы анализа брома, основанные на уменьшении оптической плотности растворов метилоранжа (Laitinen Н.А., Boyer K.М. «Anal. Chem», 1972, V. 44, Р. 920) или бромкрезолпурпурного красителя (Sollo G.F. «Environ Sci. and Technol», 1971, V. 5, P. 240) за счет обесцвечивания бромом. Недостатком обоих методов является то, что они имеют невысокую чувствительность, причем в обоих методах необходимо строго дозировать количества вводимых реагентов.

Эффективным способом определения брома является атомно-эмиссионная спектрометрия с индуктивно связанной плазмой (ИСП-АЭС). Однако возможности ИСП-АЭС в определении галогенов и, в том числе брома, достаточно ограничены по причине того, что их аналитические линии характеризуются высокими энергиями возбуждения, что не позволяет реализовать пределы обнаружения, необходимые для решения ряда важных аналитических задач (Вторушина Э.А. «Автореферат дисс. канд. хим. наук», 2010).

Из уровня техники известен чувствительный элемент на бром (Патент RU 2209424 С1), который изготавливают следующим образом: на взаимопроникающие гребенчатые электроды нанесено чувствительное покрытие в виде пленки, состоящей из смеси проводящих полимеров. Смесь состоит из трех проводящих полимеров полистануманилина, полисиланоанилина и полианилина в массовом соотношении 7:4:2, получают ее из раствора, состоящего из 1-молярного раствора соляной кислоты и смеси мономеров анилина, силаноанилина и стануманелина в гальванических ваннах в режиме потенциостатического циклирования при потенциалах 5,5-7 В и (-2) - (-3,5) В на рабочем электроде. Для селективного изменения электрофизических параметров синтезированного чувствительного покрытия при воздействии на него инфракрасным излучением определенной длины волны через электроды чувствительного элемента пропускают постоянный стабилизированный электрический ток, сила которого составляет 200-1000 мкА.

Из уровня техники известен сенсор (Патент RU 2522902 С1), в котором предлагается использовать в качестве чувствительного элемента сенсора квантовые точки, интенсивность фотолюминесценции которых при действии паров уменьшается. Квантовые точки внедрены в пристеночный слой пор полиэтилентерефталатных трековых мембран таким образом, что сами поры остаются свободными, что позволяет прокачивать через образец пробу воздуха и, соответственно, снизить порог чувствительности сенсора. Предлагаемый сенсор имеет недостаток, связанный с низкой селективностью детектирования, необратимостью взаимодействия с аналитом, а также низким сроком эксплуатации сенсора.

Задачей настоящего изобретения является создание чувствительного элемента люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде, состоящий из поливиниленовой полимерной матрицы из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, содержащей в качестве фотоактивного компонента коллоидные полупроводниковые люминофоры, включающие ядро на основе селенида кадмия и полупроводниковые оболочки на основе сульфида кадмия и сульфида цинка.

Техническим результатом настоящего изобретения является высокая селективность чувствительного элемента люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде, способ организации оптического возбуждения квантовых точек с помощью лазера или синего светодиода.

Поставленный технический результат достигается тем, что был разработан чувствительный элемент люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде, состоящий из поливиниленовой полимерной матрицы из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, содержащей в качестве фотоактивного компонента коллоидные полупроводниковые люминофоры, включающие ядро на основе селенида кадмия и полупроводниковые оболочки на основе сульфида кадмия и сульфида цинка.

Размер наночастиц фотоактивного компонента находится в диапазоне от 1 до 100 нм. Создание полупроводниковых оболочек обеспечивает дополнительную фотостабильность и повышает внутренний квантовый выход.

К бромсодержащим веществам, детектируемым чувствительным элементом люминесцентного сенсора, относятся молекулярный бром, бромистоводородная кислота, дибромэтан, бромистый метил, бромистый этил, галотан, бромбутан или их смеси.

Для изготовления чувствительного элемента люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде сополимеры на основе мономеров тетрафторэтилена с винилиденфторидом растворяют в ацетоне, тетрагидрофуране, пиридине, изопропаноле или их смеси. После чего в приготовленный раствор при постоянном перемешивании вводят дисперсию коллоидных полупроводниковых люминофоров, включающих ядро на основе селенида кадмия и полупроводниковые оболочки на основе сульфида кадмия и сульфида цинка, в неполярном растворителе, выбранном из гексана или толуола и смесь антиоксидантов из тиогликоликовой кислоты, триоктилфосфина, тиооктанола или тиофенола, с последующим осаждением пленки из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом на поверхность диэлектрической пластины.

Таким образом, другим объектом настоящего изобретения является Способ получения чувствительного элемента люминесцентного сенсора по любому из пп. 1-2, включающий растворение фторсодержащего сополимера тетрафторэтилена с винилиденфторидом в растворителе, выбранном из ацетона, тетрагидрофурана, пиридина, изопропанола или их смеси, взятой в объемном соотношении 90:6:3:1, с получением полимерного раствора; введение дисперсии коллоидных полупроводниковых люминофоров, включающих ядро на основе селенида кадмия и полупроводниковые оболочки на основе сульфида кадмия и сульфида цинка, в неполярном растворителе, выбранном из гексана или толуола, и смеси антиоксидантов, включающей тиогликоликовую кислоту, триоктилфосфин, тиооктанол или тиофенол, взятой в массовом соотношении 5:1:1, в полученный на предыдущей стадии полимерный раствор с получением стабилизированного полимерного раствора; осаждение поливиниленовой полимерной пленки из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, осаждаемой из полученного стабилизированного полимерного раствора, полученного на предыдущей стадии, на поверхности диэлектрической пластины с последующим испарением растворителей при 30°С до полного высыхания поливиниленовой полимерной пленки.

Полученный таким образом чувствительный элемент используют в качестве конструкционного элемента в составе люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде.

Сущность предлагаемого изобретения поясняется на фиг. 1-4, на которых представлены:

Фиг. 1. Конструкция сенсора с чувствительным элементом на основе квантовых точек. 1 - сосуд для создания необходимой газовой среды, 2 - кювета для размещения чувствительного элемента в газовой или жидкой среде, 3 - краны для введения паров брома, 4 - источник возбуждающего излучения, 5 - приемник люминесцентного излучения, 6 - световод, 7 - блок спектрометра FLAME-S-UV-VIS, 8 - блок питания источника излучения, 9 - компьютер.

Фиг. 2. Спектр возбуждающего света (10) и люминесценции чувствительного элемента (11), содержащего квантовые точки CdSe/CdS/ZnS в пористой матрице из фторсодержащего полимера.

Фиг. 3. Кинетика тушения люминесценции чувствительного элемента (участок 12) при введении в ячейку (при давлении 5 мм рт. ст.) и ее разгорание (участок 13) при удалении паров молекулярного брома.

Фиг. 4. Кинетика изменения интенсивности люминесценции чувствительного слоя при периодическом введении в ячейку паров аналита, содержащего бром. Стрелка, направленая вниз, отмечает момент ввода паров, вниз - удаление паров из ячейки. Давление паров брома в объеме сенсора составляет 1 мм рт. ст.

Конструкция сенсора с чувствительным элементом на основе квантовых точек приведена на Фиг. 1. Сенсор состоит из герметичного сосуда (1), необходимого для создания необходимой для анализа газовой среды, содержащей анализируемый компонент. Чувствительный элемент размещается в кювете (2). В качестве источника излучения выступает блок (8). В качестве источника возбуждающего излучения могут быть использованы светодиод или лазер (4). Введение паров осуществляется посредством кранов (3). Люминесцентный поток с помощью световода (6) поступает в приемник (5) и далее в блок спектрометра (7). Результаты испытания выводятся на компьютер (9). На Фиг. 2 приведены спектры возбуждающего излучения (10) и спектра люминесценции чувствительного элемента (11). Кинетика тушения люминесценции при введении паров брома и разгорания люминесценции при их удалении приведена на Фиг. 3. На Фиг. 4 приведена кинетика изменения интенсивности люминесценции чувствительного слоя при периодическом воздействии паров брома. Стрелками отмечены моменты ввода и удаления паров аналита.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1.

10 г сополимера тетрафторэтилена с винилиденфторидом (численное соотношение мономерных звеньев 71/29) растворяют при постоянном перемешивании в 100 мл тетрагидрофурана при температуре 80°С до полного растворения. Далее, температуру снижают до 60°С, и в полученный полимерный раствор вводят смесь в количестве 100 мг дисперсии квантовых точек на основе CdSe/CdS/ZnS в неполярном растворителе толуоле, максимум люминесценции которых находится при 615 нм. Кроме того, с целью стабилизации в полученный полимерный раствор также вводят смесь антиоксидантов, состоящую из 0,5 г тиогликоливой кислоты, 0,1 г триоктилфосфина и 0,1 г тиофенола.

После чего, проводят осаждение поливиниленовой полимерной пленки из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, осаждаемой из полученного стабилизированного полимерного раствора, включающего смесь растворителей и антиоксидантные добавки, на поверхности диэлектрической пластины с последующим испарением растворителей при 30°С до полного высыхания. Затем осуществляют обработку чувствительного элемента парами молекулярного брома при 25°С в течение 72 ч при давлении паров 20 мм рт. ст. Полученный чувствительный слой при этом имеет электрическое сопротивление 305 кОм. Отклик сенсора составляет 170 кОм на 1 мм рт. ст. В качестве источника возбуждающего излучения используют синий светодиод с длиной волны 405 нм.

Пример 2.

10 г сополимера тетрафторэтилена с винилиденфторидом (численное соотношение мономерных звеньев 71/29) растворяют при постоянном перемешивании в 100 мл смеси растворителей тетрагидрофуран:изопропанол: бутанол: пиридин, взятой в объемном соотношении 90:6:3:1 при температуре 95°С до полного растворения. Далее, температуру снижают до 85°С, и в полученный полимерный раствор вводят смесь в количестве 0,2 г дисперсии квантовых точек на основе CdSe/CdS/ZnS в неполярном растворителе гексане, максимум люминесценции которых находится при 605 нм. Кроме того, с целью стабилизации в полученный полимерный раствор также вводят смесь антиоксидантов, состоящую из 0,5 г тиогликоливой кислоты, 0,1 г триоктилфосфина и 0,1 г тиооктанола.

После чего, проводят осаждение поливиниленовой полимерной пленки из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, осаждаемой из полученного стабилизированного полимерного раствора, включающего смесь растворителей и антиоксидантные добавки, на поверхности диэлектрической пластины с последующим испарением растворителей при 30°С до полного высыхания. Затем осуществляют обработку чувствительного элемента парами молекулярного брома при 25°С в течение 48 ч при давлении паров 20 мм рт. ст. Полученный чувствительный слой при этом имеет электрическое сопротивление 280 кОм. Отклик сенсора составляет 150 кОм на 1 мм рт. ст. В качестве источника возбуждающего излучения используют синий светодиод с длиной волны 405 нм.

Пример 3.

10 г сополимера тетрафторэтилена с винилиденфторидом (численное соотношение мономерных звеньев 53/48) растворяют при постоянном перемешивании в 100 мл ацетона при температуре 90°С до полного растворения. Далее, температуру снижают до 80°С, и в полученный полимерный раствор вводят смесь в количестве 100 мг дисперсии квантовых точек на основе CdSe/CdS/ZnS в неполярном растворителе толуоле, максимум люминесценции которых находится при 615 нм. Кроме того, с целью стабилизации в полученный полимерный раствор также вводят смесь антиоксидантов, состоящую из 0,5 г тиогликоливой кислоты, 0,1 г триоктилфосфина и 0,1 г тиофенола.

После чего, проводят осаждение поливиниленовой полимерной пленки из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, осаждаемой из полученного стабилизированного полимерного раствора, включающего смесь растворителей и антиоксидантные добавки, на поверхности диэлектрической пластины с последующим испарением растворителей при 30°С до полного высыхания. Затем осуществляют обработку чувствительного элемента парами бромистого водорода при 25°С в течение 72 ч при давлении паров 20 мм рт. ст. Полученный чувствительный слой имеет при этом электрическое сопротивление 280 кОм. Отклик сенсора составляет 190 кОм на 1 мм рт. ст. В качестве источника возбуждающего излучения используют лазерный луч с длиной волны 375 нм.

Пример 4.

10 г сополимера тетрафторэтилена с винилиденфторидом (численное соотношение мономерных звеньев 53/48) растворяют при постоянном перемешивании в 100 мл изопропанола при температуре 95°С до полного растворения. Далее, температуру снижают до 80°С, и в полученный полимерный раствор вводят смесь в количестве 100 мг дисперсии квантовых точек на основе CdSe/CdS/ZnS в неполярном растворителе толуоле, максимум люминесценции которых находится при 615 нм. Кроме того, с целью стабилизации в полученный полимерный раствор также вводят смесь антиоксидантов, состоящую из 0,5 г тиогликоливой кислоты, 0,1 г триоктилфосфина и 0,1 г тиофенола.

После чего, проводят осаждение поливиниленовой полимерной пленки из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, осаждаемой из полученного стабилизированного полимерного раствора, включающего смесь растворителей и антиоксидантные добавки, на поверхности диэлектрической пластины с последующим испарением растворителей при 30°С до полного высыхания. Затем осуществляют обработку чувствительного элемента парами бромистого водорода при 25°С в течение 72 ч при давлении паров 20 мм рт. ст. Полученный чувствительный слой имеет при этом электрическое сопротивление 270 кОм. Отклик сенсора составляет 180 кОм на 1 мм рт. ст. В качестве источника возбуждающего излучения используют лазерный луч с длиной волны 375 нм.

1. Чувствительный элемент люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде, состоящий из поливиниленовой полимерной матрицы из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, содержащей в качестве фотоактивного компонента коллоидные полупроводниковые люминофоры, включающие ядро на основе селенида кадмия и полупроводниковые оболочки на основе сульфида кадмия и сульфида цинка.

2. Чувствительный элемент люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде по п. 1, где бромсодержащие вещества представляют собой бромистоводородную кислоту, дибромэтан, бромистый метил, бромистый этил, галотан, бромбутан или их смеси.

3. Способ получения чувствительного элемента люминесцентного сенсора по любому из пп. 1, 2, включающий растворение фторсодержащего сополимера тетрафторэтилена с винилиденфторидом в растворителе, выбранном из ацетона, тетрагидрофурана, пиридина, изопропанола или их смеси, взятой в объемном соотношении 90:6:3:1, с получением полимерного раствора; введение дисперсии коллоидных полупроводниковых люминофоров, включающих ядро на основе селенида кадмия и полупроводниковые оболочки на основе сульфида кадмия и сульфида цинка, в неполярном растворителе, выбранном из гексана или толуола, и смеси антиоксидантов, включающей тиогликоликовую кислоту, триоктилфосфин, тиооктанол или тиофенол, взятой в массовом соотношении 5:1:1, в полученный на предыдущей стадии полимерный раствор с получением стабилизированного полимерного раствора; осаждение поливиниленовой полимерной пленки из фторсодержащего сополимера тетрафторэтилена с винилиденфторидом, осаждаемой из полученного стабилизированного полимерного раствора, полученного на предыдущей стадии, на поверхности диэлектрической пластины с последующим испарением растворителей при 30°С до полного высыхания поливиниленовой полимерной пленки.



 

Похожие патенты:

Изобретение относится к области исследований параметров морской воды и касается автономного подводного зонда-флуориметра для измерения биооптических параметров морской воды. Зонд содержит гермокорпус с верхней и нижней крышками, блок питания, систему обработки данных на базе микроконтроллера, соединенную с блоком АЦП, датчики температуры и давления забортной воды, установленные в верхней крышке, а также герметично установленные в нижней крышке корпуса датчики.

Изобретение относится к области исследований параметров морской воды и касается автономного подводного зонда-флуориметра для измерения биооптических параметров морской воды. Зонд содержит гермокорпус с верхней и нижней крышками, блок питания, систему обработки данных на базе микроконтроллера, соединенную с блоком АЦП, датчики температуры и давления забортной воды, установленные в верхней крышке, а также герметично установленные в нижней крышке корпуса датчики.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для многоцветной иммуноцитохимической диагностики паранеоплазии шейки матки. Осуществляют получение клеточной суспензии клинического материала, окрашивание флуоресцентным красителем с последующей флуоресцентной микроскопией.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для многоцветной иммуноцитохимической диагностики паранеоплазии шейки матки. Осуществляют получение клеточной суспензии клинического материала, окрашивание флуоресцентным красителем с последующей флуоресцентной микроскопией.

Настоящее изобретение относится к устройству тестирования и настройки оптической системы комплекса визуализации изображений микрообъектов, а также к способу его изготовления. Устройство для тестирования и настройки оптической системы комплекса визуализации изображений микрообъектов состоит из микрофлюидного чипа с внутренним оптически прозрачным каналом, содержащим две плоские поверхности, и микросфер, флуоресцирующих в одном или нескольких спектральных диапазонах, которые иммобилизованы монослоем на одной из поверхностей указанного канала микрофлюидного чипа.

Изобретение относится к процессорам для проведения реакций типа полимеразной цепной реакции. Заявлен процессор 30 для проведения реакции, снабженный сосудом 10 для проведения реакции, в котором сформирован канал 12, система 37 подачи текучей среды, система 32 управления температурой для обеспечения в канале 12 высокотемпературной области и низкотемпературной области и флуоресцентный детектор 50 для обнаружения образца 20, проходящего через область обнаружения флуоресценции в канале 12, и центральный процессор 36 для управления системой 37 подачи текучей среды, основываясь на обнаруженном сигнале.

Изобретение относится к технологии создания внутри алмазов изображений, несущих информацию различного назначения, например, кода идентификации, метки, идентифицирующие алмазы. Способ записи информации внутри кристалла алмаза 1 включает проектирование информационного элемента в виде метки с помощью устройства 10, подготовку поверхности кристалла, позиционирование кристалла с использованием средств 2, 5, 6, 7, 8, 9 для создания информационного элемента, формирование информационного элемента путем воздействия излучением лазера 11 на кристалл, контроль создания информационного элемента и корректировку информационного элемента, при этом предварительно кристалл алмаза 1 размечают на бриллианты, проводят исследование кристалла на наличие макроскопических дефектов, создают его объемную цифровую модель с учетом внутренней дефектности кристалла, в том числе топологии поверхности, проектирование информационного элемента осуществляют так, чтобы он находился в требуемом месте будущего бриллианта, и осуществляют виртуальную привязку, позиционирование и ориентацию записываемого в объем кристалла информационного элемента относительно элементов огранки будущих бриллиантов, после проектирования производят расчет траектории хода лучей 12, задают параметры - размеры и геометрию фокальной области излучения через выбор точек приложения излучения, разделение луча на части в устройстве 16 и заведение всех частей луча под разными углами, маскирование части профиля луча, на основе расчета производят выбор интегрального флюенса в месте записи ниже порогового флюенса, при котором происходит локальное превращение алмаза в графит или иную неалмазную форму углерода, или образование в кристалле трещин или расколов, проводят подготовку поверхности кристалла, при позиционировании кристалла совмещают его трехмерную модель с его реальным положением, формирование информационного элемента производят системой линз 19 путем создания внутри кристалла 1 интерференционного поля путем пересечения двух или более пучков когерентного излучения лазеров с ультракороткими импульсами длительностью от 30 фс до 10 пс и энергией от 1 нДж до 40 мкДж с длиной волны от 240 до 2200 нм, приводящих к возникновению субмикронных периодических структур в записываемой области, после чего осуществляют контроль создания информационного элемента устройством 21 на основе топологии поверхности кристалла алмаза путем расчета хода лучей и их преломления для точного позиционирования информационного элемента для исключения эффекта кажущегося изменения положения и формы информационного элемента.

Устройство содержит множество пикселей формирования изображения, набор элементов, размещенных над множеством пикселей. Первый и второй элементы набора элементов размещены над первым пикселем множества пикселей и смещены относительно друг друга.

Устройство содержит множество пикселей формирования изображения, набор элементов, размещенных над множеством пикселей. Первый и второй элементы набора элементов размещены над первым пикселем множества пикселей и смещены относительно друг друга.

Способ реконструкции изображения включает получение изображения оптического жгута с однородной флуоресценцией, определение целевой точки пикселя со значением пикселя, превышающим значения окружающих пикселей на изображении оптического жгута с однородной флуоресценцией, а также определение целевой точки пикселя как центра каждого волокна в оптическом жгуте; вычисление значения серого в центре каждого волокна оптического жгута на реконструированном изображении в соответствии со значением серого в центре каждого волокна, определенным на одном или нескольких изображениях образца; выполнение пространственной интерполяции с использованием значения серого в центре каждого волокна для получения значения серого других точек пикселя в оптическом жгуте на реконструированном изображении с целью формирования реконструированного изображения.

Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение, а именно к люминесцирующим металлсодержащим полимерным композициям, предназначенным для преобразования электромагнитного излучения. Композиция содержит полимеры эфиров (мет)акриловой кислоты и сульфид кадмия, легированный ионами кальция и/или стронция, при этом ионы кальция и/или стронция содержатся в концентрации от 1,00⋅10-4 моль/л полимеризуемой композиции до 2,0⋅10-3 моль/л полимеризуемой композиции.
Наверх