Устройство температурно-вакуумного воздействия



Устройство температурно-вакуумного воздействия
Устройство температурно-вакуумного воздействия
G01R31/281 - Устройства для определения электрических свойств; устройства для определения местоположения электрических повреждений; устройства для электрических испытаний, характеризующихся объектом, подлежащим испытанию, не предусмотренным в других подклассах (измерительные провода, измерительные зонды G01R 1/06; индикация электрических режимов в распределительных устройствах или в защитной аппаратуре H01H 71/04,H01H 73/12, H02B 11/10,H02H 3/04; испытание или измерение полупроводниковых или твердотельных приборов в процессе их изготовления H01L 21/66; испытание линий передачи энергии H04B 3/46)

Владельцы патента RU 2756337:

Общество с ограниченной ответственностью «Остек-Электро» (RU)

Изобретение относится к оборудованию для проведения испытаний и измерений технических характеристик электронной компонентной базы (ЭКБ). Устройство температурно-вакуумного воздействия для проведения испытаний и измерений технических характеристик электронной компонентой базы содержит несущую герметизированную платформу с заведенными внутрь через герметичный разъем измерительными каналами, заканчивающимися пого-пинами, представляющими собой интерфейс для подключения испытываемых образцов; термогруппу, предназначенную для нагрева и охлаждения испытываемых образцов и содержащую элемент Пельтье и контактную поверхность, обеспечивающую теплообмен элемента Пельтье и испытываемых образцов; систему воздушного охлаждения, предназначенную для поглощения тепла, вырабатываемого элементами Пельтье, в составе теплосъемника, водяного насоса, проточного радиатора воздушного охлаждения с вентиляторами и соединительных шлангов; подъемный колпак, с возможностью открытия, размещения и подключения испытываемого образца; вакуумную систему в составе вакуумного насоса, соленоида коммутации, электронного вакуумметра и соединительных трубок; электронные блоки управления, коммутации и связи с внешним ЭВМ; источники питания и ПИД-регулятор; внешний защитный корпус. Технический результат - обеспечение быстрого и надежного электрического контакта устройства с тестируемым образцом, исключение вероятности короткого замыкания выводов тестируемых образцов при отрицательных температурах. 2 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к оборудованию для проведения испытаний и измерений технических характеристик электронной компонентной базы (ЭКБ).

Уровень техники

В соответствии с ГОСТ 16504-81 под испытаниями понимается экспериментальное определение параметров и показателей качества продукции в процессе функционирования или при имитации условий эксплуатации.

Нестабильность работы приборов связана с воздействием на них окружающей среды и с изменениями, происходящими в приборах. На работу электронных приборов существенное влияние оказывают климатические факторы: температура, влажность, давление атмосферы, солнечное излучение, ветровая нагрузка.

Современные технические средства, эксплуатируются в самых разных климатических условиях. Воздействия повышенной или пониженной температуры являются одними из основных факторов, определяющих нестабильность и деградацию параметров любого прибора. Температурные пределы аппаратуры определяются внешним климатическим воздействием, а также источниками тепла внутри прибора.

Большинство современных систем термотестирования ЭКБ представляют собой духовые шкафы (печи) и камеры охлаждения (холодильники).

Известны термоэлектрические установки нагрева и охлаждения для испытаний изделий в воздушной среде, например, по патенту RU 2129745 C1, опубликованному 27.04.1999, по патенту RU 2400723 C1, опубликованному 27.09.2010. Известные испытательные установки содержат теплоизолированную камеру постоянного объема для размещения испытуемого изделия, в которой установлены системы охлаждения и нагревания и вентилятор, а также датчики температурных параметров воздушной среды в камере.

Недостатками известных решений являются:

- обледенение при отрицательных температурах, в связи с тем, что испытания ЭКБ проходят в воздушной среде в закрытом объеме при нормальном атмосферном давлении, в результате чего при отрицательных температурах возникает обледенение и как следствие вероятность короткого замыкания выводов тестируемых образцов;

- низкая скорость выхода на заданную температуру;

- неравномерность распределения температуры во всем рабочем объеме, следовательно, не одинаковость создания условий испытаний для образцов.

Из уровня техники также известны термоэлементы, основанные на эффекте Пельтье. Такое оборудование может работать, обеспечивая как охлаждение, так и нагрев без применения дополнительных средств в их конструкции.

Эффектом Пельтье называют процесс выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Элементом Пельтье называют термоэлектрический преобразователь (ТЭМ, МТ, ТЕС), принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока. В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника.

Достоинствами элементов Пельтье являются небольшие размеры, отсутствие каких либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание элемента.

Из уровня техники на данный момент известны различные решения, позволяющие реализовать тестирование электронных компонентов и функционирующие с использованием элементов Пельтье.

Наиболее близким по технической сущности к предлагаемому решению является устройство тестирования для реализации способа тестирования электронных компонентов, описанного в патенте RU 2643239 C1, опубликованном 31.01.2018.

Устройство тестирования включает несущую герметизированную платформу с заведенными внутрь измерительными каналами для подключения испытываемых образцов; термогруппу, предназначенную для нагрева и охлаждения испытываемых образцов и содержащую элемент Пельтье и контактную поверхность, обеспечивающую теплообмен элемента Пельтье и испытываемых образцов, теплоотвод; подъемный колпак, с возможностью открытия, размещения и подключения испытываемого образца; электронные блоки управления, коммутации и связи с внешним ЭВМ; источники питания; внешний защитный корпус.

Недостатками известного решения являются:

- обледенение при отрицательных температурах, в связи с тем, что испытания ЭКБ проходят в воздушной среде в закрытом объеме при нормальном атмосферном давлении, в результате чего при отрицательных температурах возникает обледенение и как следствие вероятность короткого замыкания выводов тестируемых образцов;

- не предусмотрены жесткие электрические контакты внутри рабочего объема устройства, обеспечивающие подключение испытываемых образцов и не нарушающие герметичность рабочего объема, в результате отсутствие надежного контакта устройства с тестируемым образцом в процессе тестирования.

Раскрытие изобретения

Устройство температурно-вакуумного воздействия для проведения испытаний и измерений технических характеристик электронной компонентой базы (ЭКБ) содержит:

несущую герметизированную платформу с заведенными внутрь через герметичный разъем измерительными каналами, заканчивающимися пого-пинами, представляющими собой интерфейс для подключения испытываемых образцов;

термогруппу, предназначенную для нагрева и охлаждения испытываемых образцов и содержащую элемент Пельтье и контактную поверхность, обеспечивающую теплообмен элемента Пельтье и испытываемых образцов;

систему воздушного охлаждения, предназначенную для поглощения тепла, вырабатываемого элементами Пельтье, в составе: теплосъемника, водяного насоса, проточного радиатора воздушного охлаждения с вентиляторами и соединительных шлангов;

подъемный колпак, с возможностью открытия, размещения и подключения испытываемого образца;

вакуумную систему в составе: вакуумного насоса, соленоида коммутации, электронного вакуумметра и соединительных трубок;

электронные блоки управления, коммутации и связи с внешним ЭВМ;

источники питания и ПИД-регулятор;

внешний защитный корпус.

Использование системы воздушного охлаждения обеспечивает высокую скорость выхода на заданную температуру.

За счет использования вакуумной системы исключается образование обледенения при отрицательных температурах и, следовательно, исключается вероятность короткого замыкания выводов тестируемых образцов

Использование для подключения испытываемых образцов пого-пинов обеспечивает быстрый и надежный электрический контакт устройства с тестируемым образцом.

Таким образом, техническими результатами на достижение, которых направлено заявленное изобретение являются обеспечение быстрого и надежного электрического контакта устройства с тестируемым образцом, исключение вероятности короткого замыкания выводов тестируемых образцов при отрицательных температурах.

Краткое описание чертежей

На фиг. 1 представлен чертеж прибора.

На фиг. 2 представлен чертеж прибора в вертикальном разрезе.

Осуществление изобретения

Устройство температурно-вакуумного воздействия представляет настольный прибор с рабочей зоной, расположенной сверху, содержащее:

несущую герметизированную платформу 2 с заведенными внутрь через герметичный разъем 7 измерительными каналами, заканчивающимися пого-пинами 5, представляющими собой интерфейс для подключения испытываемых образцов;

термогруппу 6, предназначенную для нагрева и охлаждения испытываемых образцов и содержащую элемент Пельтье и контактную поверхность 4, обеспечивающую теплообмен элемента Пельтье и испытываемых образцов;

систему воздушного охлаждения, предназначенную для поглощения тепла, вырабатываемого элементами Пельтье, в составе: теплосъемника 3, водяного насоса, проточного радиатора воздушного охлаждения с вентиляторами и соединительных шлангов;

подъемный колпак 1, с возможностью открытия, размещения и подключения испытываемого образца;

вакуумную систему в составе: вакуумного насоса, соленоида коммутации, электронного вакуумметра и соединительных трубок;

электронные блоки управления, коммутации и связи с внешним ЭВМ;

источники питания и ПИД-регулятор;

внешний защитный корпус.

Особенностями устройства являются:

достижение заданных температур в низком вакууме;

способ передачи температурного воздействия испытываемому образцу непосредственным контактом теплопередатчика, т.е. «физическое тело - физическое тело»;

небольшой рабочий объем для размещения испытываемого образца;

в качестве как нагревательного, так и холодильного выступает один и тот элемент Пельтье;

подключение испытываемого образца в рабочем объеме посредством пого-пинов.

Устройство имеет герметичный внутренний объем, в котором расположен четырехкаскадный модуль Пельтье, печатная плата с пого-пинами 5. теплопередатчик с расположенным внутри датчиком температуры.

Для обеспечения герметизированного объема после открытия колпака 1 и установки испытываемого образца, закрытие и плотное прилегание с платформой 2 обеспечивается уплотнительным кольцом, а также зажимом, фиксирующим колпак. Сама герметизированная платформа 2 составлена из двух листов: верхнего из полиоксиметилена ПОМ-С, с низкой теплопроводностью, и нижнего из алюминиевого сплава, участвующий в процессе теплообмена как «масса».

В плотно скрученных между собой листах через уплотнительное кольцо предусмотрено пустое пространство, в котором располагается четырехкаскадный элемент Пельтье, печатная плата с пого-пинами 5 и медный теплопередатчик, представляющий собой контактную поверхность, обеспечивающую теплообмен элемента Пельтье и испытываемых образцов. Внутри теплопередатчика расположен платиновый температурный датчик Pt-100 на расстоянии не более 1 мм от поверхности контакта с образцом. На нижнем алюминиевом листе платформы также расположены герметичный разъем измерительных каналов, герметичный разъем силового питания, проходной вакуумный фитинг, а также теплосъемник 3, кронштейны крепления водяного насоса и радиатора воздушного охлаждения.

Основным элементом отбора тепла является теплосъемник 3, который расположен ровно под элементом Пельтье. Циркулирующая жидкость по замкнутому контуру рассеивает излишки тепла на проточном радиаторе с воздушным охлаждением. В качестве рабочей жидкости используется дистиллированная вода.

Управление, коммутация и точная регулировка установленной температуры обеспечивается посредством команд с внешнего ЭВМ, поступающих на ПИД-регулятор и электронные блоки коммутации.

Диапазон устанавливаемых температур от минус 65°С до плюс 125°С. Точность установки ±0,5°С. Время выхода на заданную температуру не более 10 минут.

Функционирование устройства термо-вакуумного воздействия основано на применяемом с большим запасом по холодильной мощности четырехкаскадном элементе Пельтье. Подавая питание на элемент Пельтье через электронный коммутатор, управляемый ПИД-регулятором, и меняя полярность питания, достигается требуемая температура.

Уменьшенная в размерах рабочая зона расположения и подключения образца с применением материалов с маленькой теплопроводностью дают низкие показатели паразитных тепло притоков.

После создания в рабочем объеме низкого вакуума при достижении низких температур не образуется обледенение. Испытываемому образцу сообщается температурное воздействие контактным способом через теплопередатчик.

Для контроля температуры используется датчик температуры, соедененный с электронным коммутатором и расположенный в непосредственной близости от поверхности образца прямо в теле теплопередатчика.

Включение и отключение вакуумной системы и системы воздушного охлаждения производится через электронный коммутатор средствами автоматики при установке температуры и запуске охлаждения или нагрева образца. При этом в качестве указанных средств автоматики может использоваться как внешний ЭВМ, так и простейший аналоговый блок, обеспечивающий включение/отключение вакуумной системы и системы воздушного охлаждения в момент включения/отключения устройства. Кроме того, возможен вариант реализации, в котором включение/отключение вакуумной системы и системы воздушного охлаждения производится под управлением ПИД-регулятора при достижении заданной температуры.

Устройство температурно-вакуумного воздействия для проведения испытаний и измерений технических характеристик электронной компонентой базы (ЭКБ), содержащее несущую герметизированную платформу с заведенными внутрь измерительными каналами для подключения испытываемых образцов, термогруппу, предназначенную для нагрева и охлаждения испытываемых образцов и содержащую элемент Пельтье и контактную поверхность, обеспечивающую теплообмен элемента Пельтье и испытываемых образцов, теплоотвод, подъемный колпак с возможностью открытия, размещения и подключения испытываемого образца, электронные блоки управления, коммутации и связи с внешним ЭВМ, источники питания, внешний защитный корпус, отличающееся тем, что дополнительно включает систему воздушного охлаждения, предназначенную для поглощения тепла, вырабатываемого элементами Пельтье, и состоящую из теплосъемника, водяного насоса, проточного радиатора воздушного охлаждения с вентиляторами и соединительных шлангов, вакуумную систему, состоящую из вакуумного насоса, соленоида коммутации, электронного вакуумметра и соединительных трубок, ПИД-регулятор, при этом герметизированная платформа составлена из верхнего и нижнего листов, в пустотном пространстве между которыми располагается элемент Пельтье и медный теплопередатчик, представляющий собой контактную поверхность, а на нижнем листе герметизированной платформы расположены герметичный разъем измерительных каналов, герметичный разъем силового питания, вакуумная система, а также теплосъемник, расположенный ровно под элементом Пельтье, водяной насос и радиатор воздушного охлаждения, закрепленные на кронштейнах, причем измерительные каналы, заведенные внутрь герметизированной платформы через герметичный разъем, заканчиваются пого-пинами, представляющими собой интерфейс для подключения испытываемых образцов, а ПИД-регулятор, управляющий электронным коммутатором, связан с внешним ЭВМ, подающим команды для регулировки заданной температуры.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к автоматизированной термоэлектрической системе для термоодонтометрии с испарительным охлаждением. Система состоит из набора воздействующих элементов, термоэлектрических модулей, программируемого блока питания и управления, датчиков температуры и портативного ключа.

Изобретение относится к медицинской технике, а именно к автоматизированной термоэлектрической системе для термоодонтометрии с жидкостным охлаждением. Система состоит из набора воздействующих элементов, термоэлектрических модулей, программируемого блока питания и управления, датчиков температуры и портативного ключа.

Изобретение относится к сельскому хозяйству, а именно к установкам локального обогрева поросят с использованием термоэлектрического теплового насоса. Установка содержит термопанель (9) для обогрева поросят с теплоизоляцией (14), блок управления (6) с датчиком (7) и регулятором температуры.

Изобретение относится к электротехнике, в частности, к термоэлектрическому приборостроению. Трубчатый термоэлектрический модуль содержит соосно расположенные внутренний и наружный теплопроводы, многоэлементные трубчатые термобатареи из объемных секторных ветвей, размещенные в герметизированном коаксиальном зазоре между теплопроводами, коммутационные сегментные шины, геттеры, газопоглотители, металлокерамические гермовводы-токовыводы.

Изобретение относится к области измерительной техники и может использоваться для контроля за отложениями, образующимися на используемом устройстве, которые могут отрицательно повлиять на производительность устройства и/или эффективность текучей среды по ее прямому назначению. Системы потока текучей среды могут содержать одно или большее количество термоэлектрических устройств, контактирующих с текучей средой, протекающей через систему.

Изобретение относится к теплоэнергетике, а именно, к системам поквартирного отопления и электроснабжения жилых зданий. Предложен термоэлектрический источник электроснабжения для автономного теплогенератора (ТЭИЭС), содержащий теплогенератор (1), снабженный газовым патрубком (2), соединенным с магистральной трубой дымовых газов (3), участок которого на выходе из теплогенератора покрыт цилиндрическим воздушным кожухом (4), состоящим из двух полукожухов (5), снабженных крепежными отверстиями (6), в которые вставлены сквозные крепежные болты (7), заглушенных с внутреннего торца и образующих с наружного торца кольцевую заборную щель (8).

Изобретение относится к термоэлектрическому устройству генерирования мощности. Техническим результатом является повышение эффективности генерирования мощности.

Изобретение относится к приборостроению и может быть использовано для разработки устройств, в том числе лазерных, особенно при их серийном производстве и эксплуатируемых в условиях ударных и вибрационных нагрузок. Технический эффект, заключающийся в исключении влияния динамических нагрузок на элементы конструкции термоэлектрических модулей (ТЭМ), возникающих во время эксплуатации при вибрациях и ударах от элементов, находящихся в механическом контакте с ТЭМ, достигается за счёт того, что дополнительно к стягивающим винтам сборка оснащается упорными винтами, вкрученными в радиатор, высота выступания которых относительно поверхности радиатора настраивается при предварительном монтаже сборки с применением калиброванных прокладок, толщиной, определяемой суммарным допуском на плоскостность соединяемых деталей и обеспечивающей технологические зазоры между плоскостями термостабилизируемого элемента, радиатора и поверхностями керамических пластин ТЭМ с возможностью заполнения их теплопроводящей пастой.

Изобретение относится к термоэлектричеству. Сущность: термоэлектрическая батарея характеризуется параллельным соединением полупроводниковых элементов и дополнительной батареей из последовательно соединенных термоэлементов и содержит цельное металлическое основание, на котором размещены полупроводниковые стержни с образованием спаев и дополнительная батарея из последовательно соединенных термоэлементов.

Изобретение относится к преобразованию тепловой энергии в электрическую. Технический результат: повышение эффективности термоэлектрогенератора.

Изобретение относится к измерительной технике и может быть использовано для оперативного контроля технического состояния электропроводящих элементов электрического кабеля или провода. Технический результат: упрощение процедуры контроля и снижение ее трудоемкости.
Наверх