Способ формирования единого сплошного динамического покрытия данными дистанционного зондирования земли и информационно-аналитическая система для его осуществления



Способ формирования единого сплошного динамического покрытия данными дистанционного зондирования земли и информационно-аналитическая система для его осуществления
Способ формирования единого сплошного динамического покрытия данными дистанционного зондирования земли и информационно-аналитическая система для его осуществления
Способ формирования единого сплошного динамического покрытия данными дистанционного зондирования земли и информационно-аналитическая система для его осуществления

Владельцы патента RU 2756379:

Акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы») (RU)

Изобретение относится к области дистанционного зондирования Земли из космоса, а именно к средствам обработки данных дистанционного зондирования Земли для формирования геопространственных продуктов, обладающих потребительскими свойствами и пригодных для прикладного использования настольными и мобильными приложениями. Заявлен способ формирования единого сплошного динамического покрытия данными дистанционного зондирования Земли, при котором последовательно формируют динамическое покрытие уровня обработки не ниже 1C CEOS с географически привязанными данными, динамическое покрытие уровня обработки не ниже 2 CEOS с данными с восстановленными исходными геофизическими параметрами, динамическое покрытие уровня обработки не ниже ARD CEOS с кросскалиброванными и геометрически совмещенными с субпиксельной точностью разновременными данными. Причем динамические покрытия состоят из множества сцен маршрутов съемки. Формируют по меньшей мере одно мозаичное покрытие (МС) на основании перечисленных выше данных при условии применения оператора ϕ, обеспечивающего сведение контуров смежных маршрутов покрытия и яркостного выравнивания результирующего покрытия. Технический результат - повышение эффективности прикладного использования российского информационного ресурса дистанционного зондирования Земли из космоса. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к области дистанционного зондирования Земли из космоса, а именно к средствам обработки данных дистанционного зондирования Земли для формирования геопространственных продуктов, обладающих потребительскими свойствами и пригодных для прикладного использования настольными и мобильными приложениями.

Под покрытием данными и продуктами ДЗЗ понимаются данные или продукты ДЗЗ, покрывающие заданную территорию и сохраняющие возможность визуализации и анализа с исходным пространственным разрешением.

Под динамическим покрытием понимаются разновременные данные ДЗЗ в виде исходных маршрутов (сцен) и производные на их основе информационные продукты.

Мозаичное покрытие (мозаика) – первая производная из динамического покрытия; единое изображение, полученное в результате пространственного совмещения исходных данных или продуктов ДЗЗ на заданную территорию. На основе мозаики возможно создание производных информационных продуктов.

Известны средства формирования покрытий данными дистанционного зондирования Земли – патенты на изобретения: RU 2 465 617, АО «Российские космические системы»; RU 2 646 370, АО «НИИ ТП»; RU 2 492 575, Centre national d'études spatiales и т.п. Предлагаемые способы и аппаратно-программные средства направлены преимущественно на формирование покрытий для оперативного мониторинга состояния атмосферы, подстилающей поверхности Земли и мирового океана. Достигаются задачи повышения оперативности и обеспечения возможности автоматизации процессов космического мониторинга, а также уменьшения времени планирования применения космических средств при увеличении количества космических съемок атмосферы и подстилающей поверхности Земли. Однако предлагаемые способы ограничены определенными типами исходных данных дистанционного зондирования Земли из космоса и не учитывают современные подходы к организации процессов хранения, обработки и распространения больших массивов накапливаемой информации. Кроме того, в предлагаемых решениях отсутствует возможность оперативного проведения ретроспективного анализа и выбора максимально гибких параметров для формирования производных продуктов на основе данных ДЗЗ. В целях повышения эффективности прикладного использования российского информационного ресурса дистанционного зондирования Земли из космоса необходимо усовершенствовать средства формирования покрытий и предложить методику формирования покрытия, пригодную для создания конкурентоспособных продуктов на мировом рынке технологий и услуг.

Предложен способ формирования единого сплошного динамического покрытия данными дистанционного зондирования Земли из космоса, предусматривающий иерархическое формирование исходного массива данных, полученных с космических аппаратов дистанционного зондирования Земли, на основании которого последовательно формируются динамические покрытия заданных типов, отвечающих уровню технологической готовности конечного пользователя и номенклатуре решаемых тематических задач по видам экономической деятельности. С целью создания исходного массива данных используют данные дистанционного зондирования, полученные с космических аппаратов из состава российской орбитальной группировки.

Из исходных данных формируется динамическое покрытие региона интереса, которое состоит из множества сцен маршрутов съемки в пространстве ОХТ, где ось X задает координаты района интереса, ось T – время съемки в интервале (, таким образом:

,

где – вектор, определяющий положение маршрута в пространстве OXT;

– размер окрестности, покрываемой в пространстве OXT;

уровень обработки (по классификации по классификации Комитета по спутникам наблюдения за Землей – Committee on Earth Observation Satellites, далее CEOS);

DC (Defining Conditions определяющие условия), где облачность,
– пространственное разрешение, каналы/сенсор аппаратуры, степень сжатия, - маска качества для каждого .

Интервал времени ( может быть практически любым (неделя, месяц, квартал, год), что принимается () за единичный интервал мониторинга в зависимости от номенклатуры решаемых тематических задач.

Соответственно, при расширении рассматриваемого периода времени появится необходимость рассмотрения множества D, состоящего из подмножеств типа Аj количества N на интервале (,..., + ), что схематически можно представить следующим образом (фиг. 1).

Динамическое покрытие может быть трех уровней обработки:

− уровня обработки 1C (по классификации CEOS) с географически привязанными данными;

− уровня обработки 2 CEOS из данных с восстановленными исходными геофизическими параметрами;

− динамическое покрытие уровня обработки не ниже ARD CEOS с разновременными, кросскалиброванными и геометрически совмещенными данными с субпиксельной точностью.

На основе перечисленных выше данных формируются потребительские продукты – мозаичные покрытия.

Мозаичное покрытие это динамическое покрытие со сведенными контурами смежных маршрутов, т.е.

,

где – оператор, обеспечивающий сведение контуров смежных маршрутов покрытия и яркостного выравнивания результирующего покрытия для множества маршрутов в пространстве ОХТ.

Предложенный способ формирования единого сплошного динамического покрытия данными дистанционного зондирования Земли в качестве исходных данных использует наборы данных (съемочные маршруты), полученные с космических аппаратов типа «Ресурс-П» (аппаратура «Геотон-Л1», КШМСА), «Канопус-В» (аппаратура ПСС, МСС), «Метеор-М» (аппаратура КМСС, МСУ-МР), «Электро-Л» (аппаратура МСУ-ГС).

При практическом использовании предложенного способа получают динамическое покрытие, состоящее из данных дистанционного зондирования Земли уровня обработки не ниже 1С CEOS. Из исходных архивных или оперативных данных уровня 0 CEOS автоматически формируется динамическое покрытие сцен/маршрутов уровня 1С/D CEOS, которые в дальнейшем обрабатываются до уровня 2 CEOS (фиг 2). Для сокращения времени и усилий пользователей по использованию данных дистанционного зондирования Земли динамическое покрытие предоставляется в виде уровня 2 CEOS – данные с восстановленными исходными геофизическими параметрами, в частности, коэффициентами спектральной яркости или яркостной температурой на нижней границе атмосферы. Сцены/маршруты уровня 2 CEOS являются основой для создания динамических продуктов (индексов, трендов, классификаций).

В целях оценки изменения свойств объектов подстилающей поверхности для всех сцен динамического покрытия должно обеспечиваться единство пространственного положения – привязка с субпиксельной точностью, а также радиометрических характеристик – кросскалибровка с ранее накопленными данными рассматриваемой целевой аппаратуры и кросскалибровка с данными дистанционного зондирования Земли, имеющими аналогичные характеристики. Оптимальным уровнем обработки маршрутов (сцен) динамического покрытия является уровень, обеспечивающий максимальную готовность данных для анализа, то есть уровень ARD CEOS – кросскалиброванные и геометрически совмещенные с субпиксельной точностью разновременные данные дистанционного зондирования Земли, в том числе полученные с различных, но однотипных сенсоров. На основе полученных данных формируются динамические продукты, а также многомерные мультивременные кубы данных.

В комплект каждого маршрута (сцены) динамического покрытия должна входить маска качества и маска облачности для дальнейшего создания мозаичных покрытий. На основе динамического покрытия создаются производные продукты – результаты автоматической тематической обработки, включающие различные индексы, например, вегетационные, слои классификации различных природных объектов (ландшафтное покрытие, маски леса, водных объектов, облачности и др.), а также мультивременные тренды изменений параметров отражения от поверхности и их производных
(в т.ч. мультивременные композиты). Создание мозаичных покрытий определяется наличием облачности, периодом наблюдений и границами района интереса, а также свойствами исходных данных и потребительских продуктов. Условия создания мозаичных покрытий могут комбинироваться произвольным образом, в зависимости от целевой задачи потребителя.

С целью уточнения географической привязки отдельных сцен/маршрутов из состава динамического покрытия ввиду ограниченной точности навигационной аппаратуры космических аппаратов дистанционного зондирования Земли, а также в случае ее возможных сбоев и/или отказа используются опорные покрытия с подтвержденными геометрическими характеристиками точности позиционирования. Для формирования опорного покрытия используются данные дистанционного зондирования Земли с верифицированной точностью (по результатам независимых исследований) геопозиционирования без дополнительных точек наземной опоры. В обеспечение проверки параметров точности используются опорные точки, плановые и высотные координаты которых определены геодезическими методами. Для повышения геометрических характеристик динамического покрытия также используются опорные цифровые модели рельефа/местности.

Мозаичное покрытие формируется с учетом заданных условий облачности, периода и района интереса на основе сцен/маршрутов динамического покрытия уровня 1С/D CEOS. Мозаика дополнительно может проходить этап цветового и тонового выравнивания используемых фрагментов и конвертироваться в вариант для массового использования (стандартный растровый формат со сжатием в виде набора тайлов для использования в геопорталах и геосервисах). Мозаики могут регулярно обновляться в зависимости от выбранного временного интервала и наличия исходных кондиционных данных (в соответствии с требованиями, предъявляемыми к конечному продукту, по геометрической и радиометрической точности).

Из сцен/маршрутов динамического покрытия уровня 2 CEOS с учетом заданных условий может формироваться и регулярно обновляться мозаичное покрытие с сохранением физических величин (коэффициент спектральной яркости подстилающей поверхности). Мозаичные продукты формируются как на основе мозаичного покрытия уровня 2 CEOS, так и на основе объединения динамических продуктов. В перспективе мозаичное покрытие уровня 2 CEOS заменяется мозаичным покрытием уровня ARD CEOS, которое также становится информационным источником для формирования мультивременных кубов данных (конечная стадия стандартной обработки, непосредственно предшествующая тематическому анализу).

В результате могут быть получены следующие виды мозаичных покрытий:

безоблачные/облачные – к полному или практически полному отсутствию облачности относится значение до 5% площади облаков от общей площади района интереса;

однократные/периодические – мозаики, формируемые однократно или обновляемые через заданные интервалы времени;

глобальные/региональные – мозаики, покрывающие всю территории Земли или отдельные территории по условиям потребителя;

одноканальные/многоканальные – мозаики с выбором отдельных спектральных каналов в зависимости от типа целевой аппаратуры;

бесшовные – мозаики с выполненным выравниванием яркости и тона (границы фрагментов сцен/маршрутов визуально неразличимы при стандартной подстройке гистограммы);

сплошные – мозаики, полностью покрывающие заданную территорию за требуемый период времени;

абсолютные – мозаики, содержащие значения восстановленных исходных геофизических параметров в каждом спектральном канале. На основе мозаик данного типа возможно создание производных мозаичных продуктов – индексов, классификаций и трендов аналогично динамическим продуктам;

массовые – мозаики в стандартном растровом формате со сжатием, предназначенные для массового использования в качестве базового покрытия в геопорталах и геосервисах, в том числе в виде набора тайлов или веб-сервиса.

1. Способ формирования единого сплошного динамического покрытия данными дистанционного зондирования Земли из космоса, характеризующийся тем, что

формируют исходный массив данных, полученных с космических аппаратов дистанционного зондирования Земли, на основании которого последовательно формируют

динамическое покрытие уровня обработки не ниже 1С CEOS с географически привязанными данными,

динамическое покрытие уровня обработки не ниже 2 CEOS с данными с восстановленными исходными геофизическими параметрами,

динамическое покрытие уровня обработки не ниже ARD CEOS с кросскалиброванными и геометрически совмещенными с субпиксельной точностью разновременными данными, при условии что

динамические покрытия состоят из множества сцен маршрутов съемки, представленных в виде

где

Ri(xi, ti) - вектор, определяющий положение маршрута в пространстве ОХТ;

S(dXi, dTi) - размер окрестности, покрываемой ai в пространстве ОХТ;

Li - уровень обработки (по классификации CEOS);

DC (Defining Conditions - определяющие условия), где cli - облачность, si - пространственное разрешение, bi - каналы/сенсор аппаратуры, ci - степень сжатия, qi - маска качества для каждого аi;

ΔТ - единичный интервал мониторинга,

формируют по меньшей мере одно мозаичное покрытие (МС) на основании перечисленных выше данных при условии применения оператора ϕ, обеспечивающего сведение контуров смежных маршрутов покрытия и яркостного выравнивания результирующего покрытия для множества D, состоящего из подмножеств типа Aj количества N, состоящих из сцен аi на интервале (Тk,…, Tk+N+ΔT), в пространстве ОХТ, ,

2. Способ формирования единого сплошного динамического покрытия данными дистанционного зондирования Земли из космоса по п. 1, характеризующийся тем, что для формирования исходного массива данных используют данные дистанционного зондирования, полученные с космических аппаратов типа «Ресурс-П», «Канопус-В», «Метеор-М», «Электро-Л».

3. Информационно-аналитическая система, отличающаяся тем, что включает по меньшей мере одну систему «человек - машина» и обеспечивает формирование единого сплошного динамического покрытия данными дистанционного зондирования Земли из космоса в соответствии со способом по любому из пп. 1, 2.



 

Похожие патенты:

Изобретение относится к области вычислительной техники. Технический результат – уменьшение времени обработки данных и расширение функциональных возможностей устройства.

Изобретение относится к областям компьютерного зрения и компьютерной графики с использованием нейронных сетей, машинного обучения для интерактивной сегментации объектов на изображениях, и в частности к способу интерактивной сегментации объекта на изображении и электронному вычислительному устройству для реализации данного способа.

Изобретение относится к устройствам управления отображением. Технический результат заключается в обеспечении возможности более точного отображения графического изображения в случае, когда часть широкодиапазонного изображения отображается в качестве диапазона отображения в блоке отображения, и графическое изображение дополнительно отображается.

Изобретение относится к области обработки изображений. Технический результат заключается в повышении точности изображений с высоким разрешением при их регистрации.

Изобретение относится к вычислительной технике и может быть использовано для сегментации изображений зданий и сооружений. Техническим результатом является повышение быстродействия обработки цифровых данных при снижении количества вычислительных ресурсов.

Изобретение относится к вычислительной технике и может быть использовано для сегментации изображений участков недропользования открытого типа. Техническим результатом является повышение быстродействия обработки цифровых данных при снижении количества вычислительных ресурсов.

Изобретение относится к области форматирования обратно совместимого потока, представляющего иммерсивное видеоизображение, например, когда такой поток распределяется разнородному набору клиентских устройств, некоторые из клиентских устройств конфигурируются, чтобы отображать традиционные прямоугольные видеоизображения, а другие конфигурируются, чтобы отображать иммерсивные видеоизображения.

Изобретение относится к обработке видео и формированию выходного видеосигнала из множества входных видеосигналов. Техническим результатом является формирование видеосигналов из множества входных видеосигналов в реальном времени и возможность использования входных сигналов с высоким разрешением без сопутствующего накопления задержек или без использования значительной вычислительной мощности.

Настоящее изобретение относится к области технологий видеовоспроизведения, в частности к области технологий воспроизведения панорамного видео, а именно к способу и устройству для интеграции объектов в панорамное видео. Заявленная группа изобретений включает способ интеграции объекта в панорамное видео, устройство для интеграции объекта в панорамное видео, терминальное устройство и машиночитаемый носитель, хранящий компьютерную программу.

Изобретение относится к кодированию информации. Технический результат заключается в расширении арсенала средств.

Группа изобретений относится к системе и способу мониторинга рабочего участка. Система содержит компонент связи с устройством формирования изображения беспилотного летательного аппарата, контроллер, содержащий модуль сцены, модуль объектов и модуль карты.
Наверх