Защитно-смазочный материал для горячей обработки металлов давлением

Изобретение относится к защитно-смазочным материалам для поковок из металлов и сплавов при их горячей пластической деформации. Материал включает ровинговую ткань и равномерно нанесенную на одну из ее сторон графитовую смазку на водной основе, при этом графитовая смазка на водной основе представляет собой водно-графитовый состав на основе коллоидного графита, причем содержание графита в пересчете на сухой остаток составляет 6-11% от поверхностной плотности защитно-смазочного материала. Техническим результатом является обеспечение стабильности размеров конструктивных элементов поковок, производимых партиями на одном комплекте технологического инструмента с использованием защитно-смазочного покрытия на основе графитсодержащей ровинговой ткани, отсутствие необходимости периодической очистки гравюры штампа от накапливаемого на рабочей поверхности графитсодержащего слоя.

 

Изобретение относится к металлургии, в частности к защитно-смазочным материалам, используемым при горячей деформации металлов и сплавов. Может использоваться при горячей пластической деформации титана, циркония и сплавов на их основе, а также специальных сталей.

При горячей деформации нагретая заготовка соприкасается, как правило, с более холодным инструментом. В результате, с одной стороны, происходит разогрев контактной поверхности инструмента, снижение его твердости и прочности, а с другой стороны, резкое охлаждение поверхности обрабатываемой заготовки, что может привести к образованию на ее поверхности трещин, особенно при обработке таких материалов как титан. На эти показатели влияет теплосопротивление промежуточного, разделительного слоя между металлом и инструментом. При низком коэффициенте теплопроводности в разделительном слое прочностные характеристики инструмента не уменьшаются. Это способствует повышению срока службы инструмента и качества поверхности изделия.

Для уменьшения влияния разницы температур технологического инструмента и обрабатываемой заготовки применяют разделительный слой в виде защитных смазок, выполняющий также функцию по снижению контактного трения. Известно, также, что нагрев металлов и сплавов на воздухе для выполнения операций термической обработки и горячей деформации активирует их взаимодействие с кислородом и другими атмосферными газами с образованием на поверхности заготовок дефектного газонасыщенного слоя, что приводит к снижению пластичности и коррозионной стойкости обрабатываемого материала. Образующийся твердый дефектный газонасыщенный слой требует его последующего удаления механической обработкой или травлением, что приводит к значительным потерям металла и дополнительным экономическим затратам. Для сохранения качественной поверхности заготовок и деталей при минимальных отходах металла необходимо применение защитных покрытий, предотвращающих окисление поверхностного слоя. Одновременно защитные материалы, используемые при горячей обработке металлов давлением, должны обеспечивать низкое сопротивление деформации за счет снижения трения, то есть играть роль еще и смазочных материалов. При этом дополнительно смазочный материал должен обладать высокой несущей способностью, предотвращая нарушение сплошности слоя смазки при обработке давлением, предотвращать массоперенос материала инструмента на обрабатываемый металл.

Известно защитное покрытие для предохранения металла от окисления при нагреве его перед обработкой давлением [1]. Защитное покрытие включает следующие компоненты, мас. %: огнеупорный материал 20-30, активированный уголь (порошок) 8-10, кальцинированная сода 2-3, вода 70-57, и наносится путем мелкодисперсного распыления заявляемого покрытия. Это уменьшает потери металла на угар по сравнению с аналогичным нагревом металла без покрытия и обеспечивает защиту металла от обезуглероживания.

Недостатками указанного материала являются нестабильность образующегося на поверхности покрытия по толщине, удлинение времени подготовки металла к штамповке, что приводит к снижению его температуры, необходимость в дополнительном технологическом оборудовании по подготовке и нанесению покрытия, невысокая несущая способность материала, что приводит к нарушению его сплошности в процессе пластической деформации заготовки.

Известен защитный (стеклометаллический) [2] материал на основе жидкого стекла с наполнителем из металлических порошков алюминия, железа, ферроалюминиевого сплава, размеры частиц которых обычно менее 100 мкм. Жидкое стекло служит хорошей связующей средой для таких порошков, позволяя получать стабильные суспензии, необходимые для нанесения защитного материала на поверхность. При этом процесс нанесения характеризуется малой трудоемкостью. Металлическая составляющая этих защитных материалов в процессе нагрева заготовок регламентирование окисляется, взаимодействуя с кислородом, и предотвращает проникновение кислорода к основному металлу, тем самым защищая его от окисления. Однако использование указанных металлических порошков имеет ряд недостатков. Так, работа с тонкодисперсным порошком алюминия требует принятия особых мер безопасности, т.к. он обладает высокой химической активностью даже при комнатной температуре. Порошки железа и ферроалюминия очень чувствительны к влажности окружающей среды, легко взаимодействуют с водой, подвергаются коррозии и слеживанию. Поэтому уже при комнатной температуре стеклометаллические смазочные материалы содержат достаточное количество окисленного алюминия и железа, что снижает их активность при взаимодействии с кислородом при дальнейшем нагреве и, следовательно, эффективность защиты основного металла от окисления при высоких температурах. Кроме того, при просушивании покрытия, которое проводится при температурах 100-150°C, наряду с удалением воды, содержащейся в жидком стекле, происходит взаимодействие алюминиевого и железного порошка с водой, что еще больше снижает возможность их активного взаимодействия с кислородом при дальнейшем использовании. При нагреве заготовок в температурном интервале>700°C, характерном для обработки титана, циркония, сплавов на их основе и сталей, окисление указанных порошковых наполнителей происходит довольно быстро, в значительной мере ограничивая эффективность выполнения ими защитной функции основного материала от окисления. К тому же формируемые при этом окислы алюминия и железа фактически являются твердыми абразивными материалами, приводящими к повышению сопротивления деформации в разделительном слое в условиях горячей деформации.

Известен защитно-смазочный материал для термообработки и горячей деформации заготовок из металлов и сплавов на основе жидкого стекла с наполнителем [3], в качестве которого используется порошок меди в количестве 20-70% от массы, остальное - жидкое стекло. Использование в качестве наполнителя порошка меди, обладающего достаточно высокой химической стойкостью и антифрикционными свойствами, позволяет добиться получения эффективного защитно-смазочного материала. Указанный защитно-смазочный материал приготавливают в виде суспензии при перемешивании расчетного количества медного порошка в жидком стекле. При этом медный порошок не взаимодействует с водой и кислородом воздуха вплоть до нагрева заготовки до температуры 185°C и сохраняет способность активно взаимодействовать с кислородом при дальнейшем использовании при термообработке или горячей деформации. Кроме того, после приготовления суспензии каждая частица порошка оказывается окруженной жидким стеклом, что также защищает медь от дальнейшего окисления при температурах >185°C. При достаточно высоких температурах, порядка 700-800°C, вязкость жидкого стекла снижается и частицы медного порошка «оголяются» и начинается их постепенное окисление. Однако до этого момента полезные антифрикционные и защитные свойства чистой меди, как наполнителя защитно-смазочного материала, проявляются в гораздо большей степени, чем свойства известных наполнителей, например алюминия. Поэтому предлагаемый защитно-смазочный материал может быть использован при горячей деформации и термообработке титана, циркония, сплавов на их основе и сталей. После термообработки или горячей деформации, в результате снижения вязкости жидкого стекла и окисления большей части или всего медного порошка, уменьшается адгезия между защитно-смазочным и обрабатываемым материалом и защитно-смазочный материал легко удаляется с поверхности остывшего изделия.

Недостатками указанного материала являются весьма высокая стоимость его компонентов, длительное время подготовки металла к штамповке, что приводит к снижению температуры заготовки к моменту начала пластической деформации, а также необходимость в дополнительном технологическом оборудовании по нанесению покрытия.

Наиболее близким по технической сущности изобретения является защитно-смазочный материал, применяемый при штамповке турбинных лопаток, в виде стеклоткани, на одну из поверхностей которой нанесен графитсодержащий слой с поверхностной плотностью 20-70 г/м2 и содержанием графита более 25% [4]. Пред началом штамповки отрезок стеклоткани, перекрывающий по площади гравюру и тормозящую площадку штампа, укладывают в нижнюю половину штампа. Стеклоткань укладывают в нижнюю половину штампа таким образом, что поверхность стеклоткани с нанесенным графитсодержащим слоем обращена к поверхности нижней половины штампа. Затем в штамп укладывают нагретую до температуры деформации заготовку, которую накрывают отрезком стеклоткани таким образом, что поверхность с нанесенным графитсодержащим слоем обращена к верхней половине штампа, после чего осуществляют процесс штамповки. Применение стеклоткани в качестве теплоизоляции снижает потери тепла заготовки, позволяет компенсировать за счет внутреннего тепла заготовки потерю температуры поверхностных слоев за время транспортировки от печи до технологического инструмента, снижает теплоотдачу тепла от нагретой заготовки на гравюру штампа. Это позволяет снизить риск растрескивания подхоложенного слоя, улучшает формообразование поковки и ограничивает перегрев гравюры штампа, приводящий к потере его стойкости, уменьшение толщины образующегося на поверхности металла дефектного слоя, уменьшение перепада температуры между технологическим инструментом и обрабатываемой заготовкой в начальный момент пластической обработки, снижение тепловых потерь нагретого металла при пластической обработке, а также снижение затрат времени на нанесение защитно-смазывающего материала на заготовку и простоту его удаления после завершения пластической обработки.

Недостатками указанного материала являются постепенное накапливание остатков графитсодержащего слоя в углублениях гравюры, что при получении партии одинаковых поковок приводит к изменению размеров некоторых конструктивных элементов и искажению требуемой формы изделия.

Технической задачей является обеспечение стабильности размеров конструктивных элементов поковок, производимых партиями на одном комплекте технологического инструмента с использованием защитно-смазочного покрытия на основе графитсодержащей ровинговой ткани.

Поставленная задача решается тем, что защитно-смазочный материал для горячей пластической деформации металлов и сплавов, включающий ровинговую ткань и равномерно нанесенную на одну ее сторону графитовую смазку на водной основе, отличается тем, что в графитовой смазке на водной основе, представляющей водно-графитовый состав на основе коллоидного графита, содержание графита в пересчете на сухой остаток составляет 6-11% от поверхностной плотности защитно-смазочного материала.

Защитно-смазочный материал представляет ровинговую ткань толщиной 0.56 мм или толщиной 0.7 мм (ТУ 6-48-43-90) и равномерно нанесенную на нее с одной стороны по всей поверхности графитовую смазку на водной основе, представляющую водно-графитовый состав на основе коллоидного графита. Указанная графитовая смазка имеет содержание графита 6-11% от поверхностной плотности защитно-смазочного покрытия. Поверхностная плотность защитно-смазочного покрытия толщиной 0.56 мм, полученного указанным образом, составляет 700±30 г/м2, а у защитно-смазочного покрытия толщиной 0.7 мм поверхностная плотность составляет 780±20 г/м2. Изменение указанных значений приводят к снижению эксплуатационных качеств материала.

Техническим результатом является обеспечение стабильности размеров конструктивных элементов поковок, производимых партиями на одном комплекте технологического инструмента с использованием защитно-смазочного покрытия на основе графитсодержащей ровинговой ткани, отсутствие необходимости периодической очистки гравюры штампа от накапливаемого на рабочей поверхности графитсодержащего слоя.

Источники информации

1. Куклев А.В., Айзин Ю.М., Манюров Ш.Б., Капитонов В.А., Чащин В.В., Зуева Н.В. Защитное покрытие металлических заготовок перед нагревом под обработку металлов давлением. Патент РФ №2358017. Дата подачи заявки 20.07.2007. Дата регистр. 10.06.2010. Патентообладатель: ЗАО «КОРАД» (РФ).

2. Ажажа В.М., Вьюгов П.Н., Лавриненко С.Д., Линдт К.А., Мухачев А.П., Пилипенко Н.Н. Цирконий и его сплавы: технологии производства, области применения: Обзор // Харьков: ННЦХФТИ. 1998.

3. Валеева А.Х., Мулюков P.P., Валеев И.Ш., Валиахметов О.Р., Маркушев М.В. Защитно-смазочный материал для термообработки и горячей деформации металлов и сплавов. Патент РФ №2446217. Дата подачи заявки 26.07.2010. Опубл. 27.03.2012. Патентообладатель: Учреждение Российской академии наук Институт проблем сверхпластичности металлов РАН.

4. Николаева Ю.Ю., Оськин А.В., Кропотов В.А. Способ изготовления штампованных поковок турбинных лопаток из жаропрочных сплавов на основе никеля. Патент РФ №2679157. Дата подачи заявки: 2017.12.20. Опубликовано: 2019.02.06. Патентообладатель: ПАО «Корпорация ВСМПО АВИСМА».

Защитно-смазочный материал для поковок из металлов и сплавов при их горячей пластической деформации, включающий ровинговую ткань и равномерно нанесенную на одну из ее сторон графитовую смазку на водной основе, отличающийся тем, что графитовая смазка на водной основе представляет собой водно-графитовый состав на основе коллоидного графита, при этом содержание графита в пересчете на сухой остаток составляет 6-11% от поверхностной плотности защитно-смазочного материала.



 

Похожие патенты:

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении деталей стержневой формы с головкой и резьбой. Способ включает этап отрезки заготовки от прутка, этап образования смазочного покрытия на поверхности заготовки, этап редуцирования заготовки до получения требуемого диаметра стержня, этапы высадки головки стержня, этап накатки резьбы и этап термической обработки.

Изобретение относится к обработке заготовок ковкой, в частности к прокладкам, которые располагают между штампом и заготовкой. Прокладка содержит три слоя.

Изобретение относится к обработке металлов давлением и может быть использовано при выдавливании малопластичных материалов. Размещенную в матрице заготовку выдавливают рабочим пуансоном через очко матрицы.
Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей из легких сплавов. Заготовку, полученную литьем, перемещают в туннельную печь.

Изобретение относится к стальным листам для горячей штамповки, которые могут быть использованы для производства деталей, в частности деталей шасси транспортных средств, деталей подвески и конструктивных элементов кузова, а также к способам производства деталей из стальных листов горячей штамповкой. Стальной лист для горячей штамповки содержит слой покрытия, содержащий 10-25 мас.% Ni, Zn и неизбежные примеси - остальное, и имеющий массу на единицу площади 10-90 г/м2, и смазывающий слой, содержащий твердый смазывающий материал, нанесенные в указанном порядке на поверхности стального листа.

Изобретение относится к обработке металлов давлением и может быть использовано при штамповке заготовок с использованием смазки. Лист твердого смазочного материала размещают между заготовкой и матрицей штампа в штамповочном аппарате.

Изобретения относятся к обработке металлов давлением и могут быть использованы при производстве цилиндров скважинных штанговых насосов. Получают полуфабрикат трубы горячей радиальной ковкой полой заготовки на неподвижной ковочной оправке с конической рабочей поверхностью.

Изобретение относится к обработке давлением и может быть использовано для ковки слитков и заготовок на ковочных прессах. .
Изобретение относится к области цветной металлургии, в частности к составам временных покрытий, и может быть использовано для защиты сплавов от окисления при нагреве под горячую деформацию и смазки контактных поверхностей деформируемого металла и инструмента. .

Изобретение относится к области обработки металлов давлением, в частности к холодной обработке металлов радиальной ковкой на оправке, а именно к производству прецизионных длинномерных цилиндрических изделий, преимущественно биметаллических, с повышенными требованиями прямолинейности, стабильности внутреннего диаметра по всей длине изделия, его износостойкости, и может быть использовано при изготовлении корпусов цилиндров плунжерных насосов, стволов артиллерийских орудий, трубопроводов для химической промышленности, водопроводной сети и т.п.

Изобретение относится к системе (2) охлаждения для охлаждения проката. Указанная система содержит охлаждающие балки (8) для нанесения охлаждающего средства на прокат, один собственный трубопровод (36) для снабжения охлаждающим средством для каждой из охлаждающих балок (8) и систему (9) подводящих трубопроводов для направления охлаждающего средства к трубопроводам (36) для снабжения охлаждающим средством.
Наверх