Жидкостный ракетный двигатель

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель включает бустерные насосные агрегаты, турбонасосный агрегат, камеру и газогенератор, при этом в состав двигателя включена автономная аккумуляторная батарея, приводы бустерных насосов выполнены в виде синхронных электродвигателей, а в конструкцию ТНА встроен синхронный электрогенератор с ротором на валу и статором в корпусе ТНА, причем клеммы электродвигателей и электрогенератора коммутированы с клеммами аккумуляторной батареи через преобразователь электрического напряжения постоянного тока в фазные напряжения переменного тока, обеспечивающий также функцию обратного преобразования. Изобретение обеспечивает повышение удельного импульса ЖРД с бустерными насосными агрегатами. 1 ил.

 

Изобретение относится к ракетной технике и может быть использовано в конструкциях жидкостных ракетных двигателей (ЖРД) с бустерными насосными агрегатами.

Бустерные насосные агрегаты в составе ЖРД широко используются для снижения потребных давлений компонентов топлива на входах в двигатель и, следовательно, в баках, что обеспечивает уменьшение затрат рабочего тела наддува баков и его остаточных масс в баках двигательной установки (ДУ) после ее выключения, а также масс топливных баков и баллонов для хранения газа наддува двигательной установки.

Наиболее простыми в конструктивном отношении являются бустерные струйные насосные агрегаты эжекторного типа, которые устанавливаются в магистралях входа компонентов топлива в двигатель, использующие в качестве активных рабочих тел эжекторов соответствующие компоненты топлива с высоким давлением, отбираемые с выходов основных насосов ЖРД (см. книгу «Основы теории и расчеты жидкостных ракетных двигателей» по ред. В.М. Кудрявцева, Москва, «Высшая школа», 1975 г., стр. 460, рис. 13.22). Недостатки этого технического решения обусловлены низкими коэффициентами полезного действия струйных насосов (~0,05), при которых, из-за необходимости большого расхода активного рабочего тела эжектора каждого из них, существенно повышаются расходы компонентов топлива через насосы турбонасосного агрегата (ТНА), что, например, в случае ЖРД, выполненного по схеме без дожигания связано со значительным уменьшением его основного экономического показателя - удельного импульса тяги.

В известном маршевом ЖРД разгонного блока «Бриз М», принятом за прототип изобретения, в магистралях компонентов топлива на входах в насосы ТНА установлены бустерные насосные агрегаты с приводом от гидротурбин, использующие также, как в указанном выше аналоге, в качестве рабочих тел компоненты топлива, отбираемые с выходов насосов ТНА. Коэффициенты полезного действия бустерных насосных агрегатов в этом случае значительно выше и, в зависимости от необходимых напоров бустерных насосов, находятся в диапазоне величин от 0,1 до 0,15. Соответственно, по сравнению с аналогом, в 2…3 раза уменьшаются потребные расходы компонентов топлива высокого давления на привод бустерных агрегатов. Однако и в ЖРД по прототипу потери удельного импульса из-за загрузки насосов ТНА дополнительным расходом компонентов топлива для питания гидротурбин бустерных агрегатов могут достигать величины ~3 с, например, при необходимости повышения давлений компонентов топлива бустерными насосами на входах в двигатель-прототип на 4 атм для обеспечения запуска двигателя или при расположении бустерных агрегатов в баках ДУ.

Изобретение направлено на повышение экономичности ЖРД с бустерными насосными агрегатами. Результат обеспечивается тем, что в состав жидкостного ракетного двигателя, включающего бустерные насосные агрегаты, турбонасосный агрегат, камеру и газогенератор, включена автономная аккумуляторная батарея, приводы бустерных насосов выполнены в виде синхронных электродвигателей, а в конструкцию ТНА между насосами встроен синхронный электрогенератор с ротором на валу и статором в корпусе ТНА, причем клеммы электродвигателей и электрогенератора скоммутированы с клеммами аккумуляторной батареи через преобразователь электрического напряжения постоянного тока в фазные напряжения переменного тока, обеспечивающий также функцию обратного преобразования. При таком исполнении ЖРД с бустерными насосными агрегатами исключаются расходы компонентов на привод бустерных насосов, однако появляются затраты располагаемой мощности ТНА на электрогенератор, связанные с дополнительными расходами рабочего тела турбины, что в ЖРД без дожигания хотя и приводит к потерям удельного импульса, но значительно меньшим, чем в ЖРД - прототипе.

Это следует из следующего сравнительного анализа коэффициентов полезного действия (к.п.д.) электропривода бустера предлагаемого двигателя и гидротурбинного привода двигателя - прототипа.

В предложенном ЖРД:

к.п.д. электрогенератора ηэг≈0,95

к.п.д. электродвигателя ηэд≈0,95

к.п.д. бустерного насоса ηн≈0,5

Полный к.п.д. по затратам мощности на привод бустерного агрегата предлагаемого ЖРД:

В ЖРД - прототипе:

к.п.д. гидротурбины ηт≤0,2

к.п.д. бустерного насоса ηн≤0,5

Полный к.п.д. по затратам мощности на привод бустерного агрегата:

.

Как следует из сравнения электропривод бустерных агрегатов в предлагаемой конфигурации в ~4,5 раза эффективнее, чем гидротурбина в прототипе, следовательно, связанные с ним потери удельного импульса ЖРД (типа маршевого двигателя РБ «Бриз М») в 4,5 раза меньше, то есть равны ~0,7 с, что на 2,3 с меньше, чем у прототипа.

На фиг. 1 представлена схема предлагаемого жидкостного ракетного двигателя. В состав двигателя входят камера 1, турбонасосный агрегат 2 со встроенным в его конструкцию электрогенератором 3 - с функцией электродвигателя 3, газогенератор 4, бустерные насосные агрегаты 5, 6 с электродвигателями 7, 8, преобразователь 9 электрического напряжения, аккумуляторная батарея 10 с коммутирующим элементом 11.

При запуске двигателя коммутирующий элемент 11 замыкает электрическую цепь питания через преобразователь 9 электродвигателей 7, 8 бустерных агрегатов 5, 6 и электрогенератора 3 в режиме электродвигателя.

Электрогенератор 3 в режиме электродвигателя раскручивает вал ТНА, насосы которого повышают давление компонентов топлива в предварительно заполненных магистралях двигателя.

Электродвигатели 7, 8 приводят во вращение насосы бустерных насосных агрегатов 6, 5, повышая давление на входах в насосы ТНА 2. Компоненты под напорами насосов поступают в камеру 1 и газогенератор 4, где самовоспламеняются. Продукты сгорания из камеры 1 истекают в окружающее пространство, создавая тягу двигателя. Продукты сгорания из газогенератора 4 поступают в турбину, посредством которой увеличивается вращающий момент на валу ТНА 2. Обороты ротора ТНА 2 увеличиваются, электрическое напряжение на клеммах электрогенератора 3 возрастает и после превышения величины напряжения над величиной напряжения, поступающего из преобразователя 9, электрогенератор 3 переходит из режима «Двигатель» в режим «Генератор». Вырабатываемый электрогенератором 3 ток поступает на питание электродвигателей 7, 8 и, через преобразователь 9, на подзарядку аккумуляторной батареи 10.

Двигатель выходит на установившийся режим работы.

Через заданное время при окончании подзарядки батареи 10 коммутирующий элемент 11 автоматически размыкает электрическую цепь коммутации аккумуляторной батареи 10 с электрогенератором 3 и электродвигателями 7, 8.

Использование предлагаемого ЖРД в составе космического объекта типа РБ «Бриз И» вместо ЖРД-прототипа, несмотря на наличие в его составе дополнительных электроагрегатов, существенно увеличивает массу полезной нагрузки объекта, что следует из приведенного ниже сравнительного анализа.

Массы электроагрегатов электроприводов бустерных насосных агрегатов при следующих потребных мощностях бустерных насосов окислителя и горючего двигателя - прототипа 2,148 КВт и 1,97 КВт (соответствующих повышению давления в насосах бустеров на 4 атм) и современных величинах удельных масс электродвигателей и электрогенераторов, соответственно, Мэд=0,2; Мэг=0,3 равны:

электродвигателя бустера окислителя - 0,43

электродвигателя бустера горючего - 0,394

Масса электрогенератора мощностью 4,118 КВт ~1,235 кг

Масса преобразователя ~2 кг

Масса электрических кабелей ~0,4 кг

Масса аккумуляторов батареи, предназначенной для высоковольтного питания электроприводов бустерных насосных агрегатов в период запуска ЖРД при современной удельной энергоемкости литий-ионных аккумуляторов ~200 вт⋅час/кг, времени запуска двигателя ~5 с при 20 включениях ЖРД в одном полете и суммарной мощности энергопотребления, указанной выше (4,118 КВт), ~0,6 кг, а масса блока питания не превысит 1,5 кг.

Итого, масса агрегатов, обеспечивающих привод бустерных насосов, равна ~6 кг.

Масса гидротурбин по прототипу с магистралями подвода рабочего тела к бустерным агрегатам равна 2×0,5=1 кг.

Кроме этого в предлагаемом двигателе исключена необходимость в агрегатах запуска двигателя-прототипа массой ~4 кг (раскрутка ТНА и прочие пусковые операции обеспечиваются электродвигателями бустеров и электрогенератором в режиме «Электродвигатель»).

Таким образом проигрыш по массе двигателю-прототипу ΔМк=6-4-1=1 кг.

Массовый эквивалент удельного импульса для разгонного блока «Бриз М» составляет MJ=15 кг/с.

Следовательно, выигрыш по массе конечной нагрузки РБ «Бриз М» при использовании в нем предлагаемого двигателя с электроприводом бустерных насосов составит ΔJ⋅MJ-ΔMк=2,3⋅15-1=33,5 кг.

Жидкостный ракетный двигатель, включающий бустерные насосные агрегаты, турбонасосный агрегат, камеру и газогенератор, отличающийся тем, что в состав двигателя включена автономная аккумуляторная батарея, приводы бустерных насосов выполнены в виде синхронных электродвигателей, а в конструкцию ТНА встроен синхронный электрогенератор с ротором на валу и статором в корпусе ТНА, причем клеммы электродвигателей и электрогенератора скоммутированы с клеммами аккумуляторной батареи через преобразователь электрического напряжения постоянного тока в фазные напряжения переменного тока, обеспечивающий также функцию обратного преобразования.



 

Похожие патенты:

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД) и энергоустановках различного назначения. Криогенный жидкостный ракетный двигатель комбинированной схемы содержит камеру с головкой и трактом охлаждения, турбонасосный агрегат окислителя, состоящий из насоса окислителя и турбины, турбонасосный агрегат горючего, состоящий из насоса горючего и турбины, вход турбины которого соединен с выходом тракта охлаждения камеры, а ее выход соединен с входом головки камеры, магистрали окислителя и горючего высокого давления, при этом на входе турбины турбонасосного агрегата окислителя установлен газогенератор, вырабатывающий рабочий газ для привода турбины, причем вход газогенератора соединен с магистралями окислителя и горючего высокого давления.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях, преимущественно в двигателях с большой и средней тягой. Бустерный турбонасосный агрегат жидкостного ракетного двигателя содержит осевой насос, корпус и вал, на который установлены осевое колесо насоса и подшипники, согласно изобретению подшипники установлены между осевыми упорами корпуса, а между подшипниками установлена осевая пружина.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), преимущественно кислородно-метановых и кислородно-водородных. Бустерный турбонасосный агрегат ЖРД, содержащий насос, турбину, подшипник турбины, подшипник насоса, разделительную полость между насосом и турбиной, ограниченную со стороны турбины уплотнением вала, подшипник турбины установлен со стороны насоса за разделительной, согласно изобретению разделительная полость размещена между подшипником турбины и уплотнением вала, со стороны турбины, в разделительной полости установлен разгрузочный диск, на наружном диаметре которого выполнено уплотнение, а разделительная полость в периферийной части соединена отводящими каналами с отводом насоса.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), ядерных ракетных двигателях (ЯРД) и энергоустановках различного назначения. Жидкостный ракетный двигатель состоит из камеры 1, турбонасосного агрегата (ТНА) 2, бустерных насосных агрегатов 3 (БНА1) и 4 (БНА2), установленных на линии каждого из компонентов топлива.

Изобретение относится к жидкостным ракетным двигателям. Камера жидкостного ракетного двигателя, работающего по безгазогенераторной схеме, состоящая из последовательно соединенных смесительной головки, камеры сгорания и сопла, согласно изложению, смесительная головка совместно с камерой сгорания выполнена из двух или более конструктивно обособленных параллельно функционирующих блоков, объединенных единым соплом по трактам продуктов сгорания.

Изобретение относится к жидкостной ракетной двигательной установке. Жидкостная ракетная двигательная установка со вспомогательной электрической мощностью содержит форкамеру (11) для образования газообразных продуктов сгорания горючего и окислителя; главную камеру (10) сгорания для сжигания газовой смеси из горючего и газообразных продуктов сгорания, выпускаемых из форкамеры (11), турбонасос (20), включающий в себя турбину (21), вращаемую потоком газообразных продуктов сгорания, и первый насос (22) и второй насос (23), приводимые вращением турбины, при этом турбонасос (20) подает горючее из бака (30) горючего в форкамеру (11) и подает окислитель из бака (40) окислителя в форкамеру (11) и в главную камеру (10) сгорания, электрический двигатель (25) для вращения турбины (21) до форкамеры (11) и главной камеры (10) сгорания и муфту для соединения электрического двигателя (25) и турбины (21) и размыкания этого соединения между электрическим двигателем (25) и турбиной (21).

Изобретение относится к ракетной технике. Способ получения восстановительного газа, основанный на газификации жидких окислителя и избыточного количества горючего путем их химического взаимодействия в нескольких зонах, в соответствии с изобретением полный расход окислителя предварительно газифицируют в первой зоне взаимодействием с малой частью расхода горючего, этот окислительный газ используют в качестве эжектирующего рабочего тела в эжекторе-дожигателе конденсированной фазы во второй зоне, газ из которого смешивают для взаимодействия в третьей зоне с оставшейся частью расхода горючего, затем полученный восстановительный газ путем сепарации разделяют на очищенный газ, который подают потребителю, и псевдоожиженную небольшим расходом газа конденсированную фазу, которую используют в качестве эжектируемого рабочего тела в упомянутом эжекторе-дожигателе.

Изобретение относится к уплотнительной технике. Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок заключается в определении допустимого радиального люфта вала, равного 0,15÷0,30 мм.

Предложен вращательный механизм, такой как турбокомпрессор, имеющий систему восстановления текучей среды для восстановления протекающей рабочей среды, такой как газообразный гелий в контуре гелия, который протек через уплотнения вала, предусмотрено очистное устройство для удаления загрязняющих веществ из рабочей среды, причем турбокомпрессор может иметь одну текучую среду, такую как гелий или водород, пропускаемую через один турбокомпонент, такой как турбина, и вторую рабочую среду, такую как воздух или гелий, пропускаемую через второй турбокомпонент, такой как компрессор, при этом вращательный механизм выполнен с возможностью установки в двигателе летательного аппарата.

Изобретение относится к области ракетного двигателестроения и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Жидкостный ракетный двигатель содержит камеру сгорания с трактом охлаждения и форсуночной головкой, газогенератор, турбонасосный агрегат, включающий в себя насос горючего, насос окислителя, турбину, вход которой сообщается с выходом газогенератора, а выход со смесителем, выполненным в виде трубки Вентури и соединенным с выходом насоса окислителя, при этом выход смесителя соединен с форсуночной головкой камеры.

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя с турбонасосной системой подачи топлива, выполненного по схеме без дожигания, с радиационно-охлаждаемым насадком сопла камеры. Жидкостный ракетный двигатель, выполненный по схеме без дожигания, в состав которого входят турбонасосный агрегат (ТНА) 3, газогенератор 4, газовод 5 выхлопного тракта турбины ТНА 3, камера сгорания 1 с радиационно-охлаждаемым насадком (РОН) сопла 2, охлаждаемым выхлопным газом турбины, вход в тракт охлаждения которого сообщен через коллектор 6 с газоводом 5, а выход - с кольцевым сверхзвуковым соплом 8, выполненным вокруг РОН 2, в газовод 5 перед коллектором тракта охлаждения 6 РОН встроен центробежный сепаратор 9 в виде вихревой камеры с тангенциальным входом 10 и двумя выходами 11, 12, один из которых с отбором газа из центральной зоны вихревой камеры направлен по направлению тяги двигателя к коллектору 6 тракта охлаждения РОН, а другой при отборе с периферии вихревой камеры против направления тяги двигателя - к соплу сброса 13 отсепарированной твердой фазы. Изобретение обеспечивает повышение надежности и эффективности охлаждения РОН двигателя. 2 ил.
Наверх