Способ припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины (варианты)

Группа изобретений может быть использована для повышения надежности и увеличения ресурса рабочих лопаток последних ступеней паровых турбин путем припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины. Предварительно на каждой из спаиваемых поверхностях формируют электроискровым методом покрытие с использованием в качестве легирующего электрода прутка из чистого серебра, толщиной 60-120 мкм. В соответствии с первым вариантом реализации способа размещают между спаиваемыми поверхностями порошок тугоплавкого припоя в смеси с порошком противоокислительного флюса. Нагревают до расплавления порошка припоя и затем прижимают стеллитовую накладку к рабочей лопатке до отвердения припоя после отключения нагрева. В соответствии с другим вариантом - порошок противоокислительного флюса разводят дистиллированной водой в соотношении 1,0:(0,8-1,0) и наносят его путем смачивания сформированного на спаиваемых поверхностях серебряного покрытия, а припой между спаиваемыми поверхностями размещают в виде пластинки толщиной 0,6-0,8 мм. Технический результат изобретения заключается в повышении прочности паяного соединения стеллитовой накладки и стальной рабочей лопатки паровой турбины. 2 н. и 2 з.п. ф-лы.

 

Область техники

Изобретение относится к области паротурбиностроения и может быть использовано для повышения надежности работы и увеличения ресурса подверженных эрозионному износу рабочих лопаток последних ступеней паровых турбин.

Уровень техники

Одним из распространенных способов повышения эрозионной стойкости рабочих лопаток последних влажнопаровых ступеней паровых турбин является припайка на входные кромки защитных накладок из твердосплавных материалов, таких как кобальтовый стеллит.

Из уровня техники известен принятый в качестве прототипа заявляемого изобретения способ припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины с использованием тугоплавкого припоя, при котором засыпают порошок припоя в смеси с противоокислительным флюсом между очищенными контактными поверхностями указанных спаиваемых деталей, нагревают соединение до температуры плавления припоя и прижимают накладки к лопатке до отвердения припоя после отключения нагрева. При этом часть припоя предварительно наносят тонким слоем на обе спаиваемые поверхности методом электроискрового легирования (ЭИЛ) с использованием в качестве легирующего электрода прутка припоя, причем толщина наносимого на каждую из спаиваемых поверхностей слоя припоя составляет (40…190) мкм, а электроискровое легирование осуществляют с величиной энергии единичного импульса (0,3…0,7) Дж и удельным временем легирования (0,5…1,0) мин/см2. Причем в качестве припоя используется порошок серебряного припоя, в состав которого входят: серебро - 45%, медь - 30% и цинк - 25% при допустимом содержании примесей не более 0,5% (патент RU 2544718 С1, опубл. 20.03.2015 г. (далее - [1])).

Недостатком известного из [1] способа припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки влажнопаровой ступени паровой турбины является относительно невысокая прочность паяного соединения стеллитовой накладки и стальной рабочей лопатки в виду использования для предварительного нанесения тонкого слоя на спаиваемые поверхности стеллитовой накладки и стальной рабочей лопатки части припоя, в котором содержится недостаточно высокое количество серебра.

Раскрытие изобретения

Задачей изобретения является повышение надежности работы и увеличение ресурса рабочих лопаток последних ступеней паровых турбин, а достигаемым техническим результатом - повышение прочности паяного соединения стеллитовой накладки и стальной рабочей лопатки паровой турбины.

Решение указанной задачи путем достижения указанного технического результата в соответствии с первым объектом заявляемой группы изобретений, обеспечивается тем, что способ припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины с использованием тугоплавкого припоя заключается в том, что сначала засыпают порошок припоя в смеси с противоокислительным флюсом между предварительно сформированным методом ЭИЛ покрытием близким по химическому составу к основе припоя на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки. После чего включают нагрев до расплавления порошка припоя и затем прижимают стеллитовую накладку к рабочей лопатке до отвердения припоя после отключения нагрева. При этом указанное покрытие формируют с использованием в качестве легирующего электрода прутка из чистого серебра. Причем толщина сформированного покрытия на каждой из спаиваемых поверхностей составляет 60-120 мкм, а электроискровое формирование покрытия осуществляют с величиной энергии единичного импульса 0,2-0,8 Дж и удельным временем легирования 1,2-1,5 мин/см2.

Решение указанной задачи путем достижения указанного технического результата в соответствии со вторым объектом заявляемой группы изобретений, обеспечивается тем, что способ припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины с использованием тугоплавкого припоя заключается в том, что сначала размещают пластинку из припоя толщиной 0,6-0,8 мм между предварительно сформированным методом ЭИЛ покрытием близким по химическому составу к основе припоя на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки, порошок с противоокислительным флюсом разводят дистиллированной водой в соотношении 1:(0,8-1,0) и смачивают полученной смесью указанное покрытие на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки. После чего включают нагрев до расплавления пластинки из припоя и затем прижимают стеллитовую накладку к рабочей лопатке до отвердения припоя после отключения нагрева. При этом указанное покрытие формируют с использованием в качестве легирующего электрода прутка из чистого серебра. Причем толщина сформированного покрытия на каждой из спаиваемых поверхностей составляет 60-120 мкм, а электроискровое формирование покрытия осуществляют с величиной энергии единичного импульса 0,2-0,8 Дж и удельным временем легирования 1,2-1,5 мин/см2.

Причинно-следственная связь между отличительными признаками заявляемого изобретения и достигаемыми техническими результатами заключается в следующем.

Предварительное нанесение покрытия из чистого серебра, толщина которого составляет 60-120 мкм, на спаиваемые поверхности стеллитовой накладки и рабочей лопатки методом ЭИЛ с величиной энергии единичного импульса 0,2-0,8 Дж и удельным временем легирования 1,2-1,5 мин/см2 позволяет увеличить прочность сцепления стеллитовой накладки с рабочей лопаткой за счет увеличения в зоне спая серебра, использование которого позволяет обеспечить высокую прочность и повышенную устойчивость к коррозии получаемого соединения.

Осуществление изобретения

Ниже приведены частные примеры осуществления вариантов способа припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины с использованием тугоплавкого припоя.

Способ припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки влажнопаровой ступени паровой турбины описан на примере припайки на входную кромку лопатки из хромистой коррозионностойкой стали 13Х11Н2В2МФ-Ш (ЭИ961-Ш) накладок из стеллита ВЗК. Для пайки использовался порошок припоя ПСр-45. В химический состав припоя входят серебро - 45%, медь - 30% и цинк - 25% при допустимом содержании примесей не более 0,5%. Температура плавления припоя составляет 720…740°С, т.е. пайка не должна повлиять на структуру материала лопатки. Это имеет большое значение для пайки особенно хромистых коррозионностойких сталей, так как такие стали при нагреве могут закаляться, и в них в зоне пайки могут образовываться трещины. При пайке использовался флюс марки ПВ209Х (ГОСТ 23178-78) состава: бор - 12,3…13,3%, фтор - 26,7…28,5%, калий - 33,5…36,4%, кислород - 21,8-27,5%. Стыкуемые поверхности лопатки и стеллитовой накладки перед пайкой тщательно зачищались механическим способом с использованием абразивно-лепестковых кругов. Предварительно с помощью портативной установки для электроискрового легирования типа ГБФ-5, КГБ-5М разработки ОАО «ВТИ» с использованием в качестве легирующего электрода прутка из чистого серебра диаметром 2-4 мм на спаиваемые поверхности наносился слой толщиной в пределах 60-120 мкм. Величина энергии единичного импульса в пределах 0,2-0,8 Дж и удельного времени легирования 1,2-1,5 мин/см2 выбирались из расчета получения 100% покрытия на формируемой поверхности. Технологические параметры формирования покрытия из чистого серебра применительно к лопаточным сталям ферритно-мартенситного (12Х13-Ш, 15Х12ВНМФ-Ш) и мартенситного (20Х13-Ш, 15Х11МФ-Ш, 20Х12ВНМФ-Ш) классов не изменяются.

Созданные методом ЭИЛ покрытия из чистого серебра на стыкуемых поверхностях имеют высокую прочность сцепления с рабочей лопаткой из хромистой коррозионностойкой стали и накладкой из кобальтового стеллита за счет металлургического и диффузионного процессов при электроискровой обработке, что в сочетании с высоким уровнем сплошности ЭИЛ покрытий и повышенным содержанием серебра в зоне припайки обеспечивает высокую прочность паяного соединения.

Технология самого процесса пайки может быть осуществлена двумя вариантами способа.

Первый вариант способа

Сначала осуществлялось формирование покрытия на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки с использованием в качестве легирующего электрода прутка из чистого серебра с величиной энергии единичного импульса 0,2-0,8 Дж и удельным временем легирования 1,2-1,5 мин/см2. Причем толщина сформированного покрытия на каждой из спаиваемых поверхностей составляла 60-120 мкм. Затем между стыкуемыми поверхностями покрытия рабочей лопатки и стеллитовой накладки засыпался порошок припоя ПСр-45 в смеси с противоокислительным флюсом марки ПВ209Х и включался индукционный нагрев до расплавления припоя. После чего осуществлялся прижим стеллитовой накладки к рабочей лопатке до отвердения припоя после отключения нагрева. После остывания соединения оно зачищалось от остатков припоя и противоокислительного флюса.

Второй вариант способа

Сначала осуществлялось формирование покрытия на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки с использованием в качестве легирующего электрода прутка из чистого серебра с величиной энергии единичного импульса 0,2-0,8 Дж и удельным временем легирования 1,2-1,5 мин/см2. Причем толщина сформированного покрытия на каждой из спаиваемых поверхностей составляла 60-120 мкм. Затем между стыкуемыми поверхностями покрытия рабочей лопатки и стеллитовой накладки размещалась пластинка из припоя толщиной 0,6-0,8 мм, а порошок с противоокислительным флюсом разводился дистиллированной водой в соотношении 1:(0,8-1,0), осуществлялось смачивание полученной смесью указанного покрытия на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки и включался индукционный нагрев до расплавления припоя. После чего осуществлялся прижим стеллитовой накладки к рабочей лопатке до отвердения припоя после отключения нагрева. После остывания соединения оно зачищалось от остатков припоя и противоокислительного флюса.

Промышленная применимость

Варианты способа припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины с использованием тугоплавкого припоя согласно патентуемой группе изобретений отвечают условию «промышленная применимость». Сущность технического решения раскрыта в формуле и описании достаточно ясно для понимания и промышленной реализации соответствующими специалистами на основании современного уровня техники в области паротурбиностроения.

1. Способ припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины, включающий предварительное формирование на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки покрытия методом электроискрового легирования, размещение между спаиваемыми поверхностями тугоплавкого припоя на основе серебра и противоокислительного флюса с последующим нагревом до расплавления припоя, при этом прижимают стеллитовую накладку к рабочей лопатке до отвердения припоя после отключения нагрева, отличающийся тем, что покрытие на каждой из спаиваемых поверхностей формируют из чистого серебра с использованием серебряного прутка в качестве легирующего электрода, причем используют порошкообразный припой, который засыпают между спаиваемыми поверхностями в смеси с порошком противоокислительного флюса, при этом указанное покрытие на каждой из спаиваемых поверхностей формируют толщиной 60-120 мкм.

2. Способ по п. 1, отличающийся тем, что электроискровое формирование покрытия на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки осуществляют с величиной энергии единичного импульса 0,2-0,8 Дж и удельным временем легирования 1,2-1,5 мин/см2.

3. Способ припайки износостойкой стеллитовой накладки на входную кромку стальной рабочей лопатки паровой турбины, включающий предварительное формирование на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки покрытия методом электроискрового легирования, размещение между спаиваемыми поверхностями тугоплавкого припоя на основе серебра и противоокислительного флюса с последующим нагревом до расплавления припоя, при этом прижимают стеллитовую накладку к рабочей лопатке до отвердения припоя после отключения нагрева, отличающийся тем, что покрытие на каждой из спаиваемых поверхностей формируют из чистого серебра с использованием серебряного прутка в качестве легирующего электрода, причем порошок противоокислительного флюса разводят дистиллированной водой в соотношении 1,0:(0,8-1,0) и наносят его путем смачивания сформированного на спаиваемых поверхностях серебряного покрытия, а припой между спаиваемыми поверхностями размещают в виде пластинки толщиной 0,6-0,8 мм, при этом указанное серебряное покрытие на каждой из спаиваемых поверхностей формируют толщиной 60-120 мкм.

4. Способ по п. 3, отличающийся тем, что электроискровое формирование покрытия на спаиваемых поверхностях стеллитовой накладки и рабочей лопатки осуществляют с величиной энергии единичного импульса 0,2-0,8 Дж и удельным временем легирования 1,2-1,5 мин/см2.



 

Похожие патенты:

Изобретение относится к способам импульсно-лазерной модификации и ионно-плазменного упрочнения поверхности и может быть использовано, например, в энергетическом машиностроении для защиты рабочих лопаток влажнопаровых ступеней турбин от износа, вызванного каплеударной эрозией. Способ нанесения покрытия на поверхность стального изделия включает ионную очистку поверхности изделий и вакуумной камеры в среде инертного газа, ионное травление и ионно-плазменное азотирование поверхности изделия, причем до ионной очистки изделия текстурируют рельеф поверхности изделия импульсно-лазерной модификацией поверхности с использованием инфракрасного иттербиевого волоконного лазера с длиной волны 1064 нм и средней мощностью лазерного излучения не более 22,4 Вт с заданными глубиной впадин и высотой выступов 10÷30 мкм, шириной выступов и шириной впадин 40÷60 мкм, формируют бороздки с продольным направлением и параллельным отношением бороздок друг к другу, а глубину ионно-плазменного азотирования-упрочнения поверхности выбирают равной 30÷100 мкм.

Изобретение относится к способам импульсно-лазерной модификации и ионно-плазменного упрочнения поверхности и может быть использовано, например, в энергетическом машиностроении для защиты рабочих лопаток влажнопаровых ступеней турбин от износа, вызванного каплеударной эрозией. Способ нанесения покрытия на поверхность стального изделия включает ионную очистку поверхности изделий и вакуумной камеры в среде инертного газа, ионное травление и ионно-плазменное азотирование поверхности изделия, причем до ионной очистки изделия текстурируют рельеф поверхности изделия импульсно-лазерной модификацией поверхности с использованием инфракрасного иттербиевого волоконного лазера с длиной волны 1064 нм и средней мощностью лазерного излучения не более 22,4 Вт с заданными глубиной впадин и высотой выступов 10÷30 мкм, шириной выступов и шириной впадин 40÷60 мкм, формируют бороздки с продольным направлением и параллельным отношением бороздок друг к другу, а глубину ионно-плазменного азотирования-упрочнения поверхности выбирают равной 30÷100 мкм.

Способ относится к машиностроению и двигателестроению и может быть использован для изготовления деталей сложной пространственной формы из труднообрабатываемых металлов и сплавов. Способ изготовления деталей сложной формы гибридным литейно-аддитивным методом, включающий селективную лазерную наплавку с помощью жаропрочных никелевых порошков, согласно изобретению характеризуется тем, что первоначально задают линейные размеры заготовки детали с припуском на величину ее термической деформации, затем по заданным размерам изготавливают заготовку детали селективной порошковой лазерной наплавкой с помощью управляющей программы, получают оболочковую заготовку с неспеченным порошком внутри, которую покрывают слоем газифицируемого материала путем окунания в ванну с толщиной покрытия, превышающей величину термической деформации, заготовку с покрытием после остывания обрабатывают на высокоточном станке с числовым программным управлением до размеров и требуемой шероховатости поверхности готовой детали, полученную заготовку покрывают жаропрочной керамической суспензией толщиной 6-8 мм путем окунания 8-9 раз в ванну, слой суспензии сушат воздушно-аммиачным способом при температуре 20-25°С при влажности 60-70%, затем заготовку с керамическим покрытием прокаливают при температуре 950-1000°С в течение не менее 4 ч, после чего заготовку в керамической форме помещают в индукционный плавильный комплекс, производят переплав неспеченного порошка при температуре 1200-1440°С в течение не менее 4 часов, получают деталь с заданными размерами, которую охлаждают на воздухе в течение 3-4 часов и освобождают от керамического покрытия.

Группа изобретений относится к устройству и способу для нанесения покрытия на одну или более деталей методом физического осаждения из газовой фазы (PVD). Устройство содержит по меньшей мере одну камеру подачи, по меньшей мере одну камеру для нанесения покрытия и по меньшей мере один манипулятор с держателем, к которому обеспечена возможность прикрепления одной или более деталей.

Изобретение относится к области производства турбин. Предложен турбинный узел, содержащий осевую турбину, содержащую аксиально расположенную последовательность роторных секций 10, каждая из которых содержит внешнее кольцо 14 и роторные лопатки 2, при этом внешние кольца роторных секций соединяются для образования вращающегося внешнего корпуса, причем роторные секции выполнены из реакционно-связанного нитрида кремния.

Изобретение относится к области производства турбин. Предложен турбинный узел, содержащий осевую турбину, содержащую аксиально расположенную последовательность роторных секций 10, каждая из которых содержит внешнее кольцо 14 и роторные лопатки 2, при этом внешние кольца роторных секций соединяются для образования вращающегося внешнего корпуса, причем роторные секции выполнены из реакционно-связанного нитрида кремния.

Изобретение относится к металлургии, а именно к сплаву с высокой стойкостью к окислению, и может быть использовано при изготовлении компонентов газовой турбины. Сплав с высокой стойкостью к окислению содержит, мас.%: Со 9,00-9,50, W 9,30-9,70, Cr 8,00-8,70, Al от более 8,00 до 15,50, Ti 0,60-0,90, Та 2,80-3,30, Мо 0,40-0,60, Hf вплоть до 1,20, Ni - остальное.

Изобретение относится к металлургии, а именно к суперсплавам на основе никеля, и может быть использовано в авиационной промышленности, в частности, для изготовления монокристаллических лопаток газотурбинного двигателя. Суперсплав на основе никеля содержит, в мас.%: 4,0-6,0 хрома, 0,4-0,8 молибдена, 2,5-3,5 рения, 6,2-6,6 вольфрама, 5,2-5,7 алюминия, 0,0-1,6 титана, 6,0-9,9 тантала, 0,3-0,7 гафния, 0,0-0,3 кремния, остальное – никель и возможные примеси.

Изобретение относится к металлургии, а именно к суперсплавам на основе никеля, и может быть использовано в авиационной промышленности, в частности, для изготовления монокристаллических лопаток газотурбинного двигателя. Суперсплав на основе никеля содержит, в мас.%: 4,0-6,0 хрома, 0,4-0,8 молибдена, 2,5-3,5 рения, 6,2-6,6 вольфрама, 5,2-5,7 алюминия, 0,0-1,6 титана, 6,0-9,9 тантала, 0,3-0,7 гафния, 0,0-0,3 кремния, остальное – никель и возможные примеси.

Группа изобретений может быть использована для конструктивного ремонта пайкой компонентов (1) газовой турбины на основе никеля с высоким содержанием гамма–штрих фазы. Поврежденный компонент размещают в печи и нагревают до первой температуры, которую поддерживают в течение установленного периода времени до охлаждения до около комнатной температуры.
Изобретение относится к подготовке деталей из алюминия и его сплавов под пайку. Осуществляют обработку поверхности путем обезжиривания ультразвуком, травления в растворе гидроксида натрия и осветления в азотной кислоте.
Наверх