Полимерный композиционный материал
Владельцы патента RU 2757595:
Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) (RU)
Изобретение относится к области создания полимерных композиционных материалов, предназначенных для использования в аддитивных технологиях (3D-печать). Полимерный композиционный материал выполнен на основе смеси полифениленсульфона и полиэфиримида при соотношении 50:50 масс. ч. и органомодифицированной глины и дополнительно включает в себя поликарбонат при следующем соотношении, масс. ч: полифениленсульфон/полиэфиримид 100, поликарбонат 23-28, органомодифицированная глина 0,5-2. Органомодифицированная глина представляет собой продукт модификации монтмориллонитовой глины с катионообменной емкостью 95 мг-экв/100 г глины гуанидинсодержащими солями в количестве 5 % от массы монтмориллонита. Технический результат – получение композиционных материалов, удовлетворяющих требованиям по физико-механическим характеристикам, предназначенных для аддитивных технологий. 2 табл., 6 пр.
Изобретение относится к области создания полимерных композиционных материалов, предназначенных для использования в аддитивных технологиях (3D-печать).
Среди технологий, постоянно появляющихся в жизни человека благодаря достижениям научного прогресса, существуют и такие, которые носят название «аддитивных». Как известно аддитивные технологии (АТ) являются отраслью цифровой промышленности и представляют собой такой метод производства изделий и различных продуктов, при котором происходит наращение слоев объекта посредством использования компьютерных устройств для 3D-печати. Активное внедрение аддитивных технологий способствует вступлению в новую эру, в эру качественных изменений многих производственных сфер и упрощению организационных процессов. Анализ новейших разработок показывает, что аддитивные технологии в будущем - это обычный рядовой процесс, но чтобы науке до этого дорасти предстоит преодолеть много проблем и принять соответствующие решения. Одной из проблем таких технологий является не соответствие желаемым характеристикам существующих полимерных материалов.
В настоящее время из уровня техники известно большое количество разработок в области создания полимерных материалов, предназначенных для аддитивных технологий, а именно для 3D-печати.
Известен патент на изобретение US № 5476748A от 19.12.1995 г. «Светочувствительные композиции» описывающие получение композиционного полимерного материала, предназначенного для получения конструкций, методом 3D-печати. Композиция включает в себя: от 40 до 80 мас.% жидкой эпоксидной смолы, от 0,1 до 10 мас.%, катионного фотоинициатора, от 5 до 40 мас.% жидкого циклоалифатического или ароматического диакрилата, от 0 до 15 мас.% жидкого поли (мет-) акрилата,
от 0,1 до 10 мас.% радикального фотоинициатора и от 5 до 40 мас.% простого полиэфира, сложного полиэфира или полиуретана с ОН-концевыми группами.
Патент на изобретение US № 6869559B2 от 22.03.2005 г. описывающий способ получения полимерного материала на основе полимера полифенилсульфона (PPSF) и поликарбоната (PC). Как утверждают авторы патента, смесь PPSF / PC демонстрирует хорошие химическую стойкость, термическую стабильность и не накапливается в сопле устройства трехмерного моделирования.
Патент RU № 2398732 «Способ получения полимерных нанокомпозитов» описывает изобретение, относящееся к способу получения нанокомпозитов на основе полимеров и наносиликатов, модифицированных органическими соединениями, с улучшенными прочностными характеристиками, предназначенных для изготовления изделий в электротехнике, машиностроении. Способ включает смешение в расплаве полимера - полисульфона или полиамида и наполнителя - монтморрилонита или бентонита с катионной обменной емкостью 60-150 мг-экв/100 г. Наполнитель в виде водной дисперсии с концентрацией 1-7% предварительно модифицируют органическими катионами путем смешения с последующей сушкой. В качестве ионогенного поверхностно-активного вещества используют алкилбензилдиметиламмоний хлорид в количестве, равном 40-150% от катионной обменной емкости наполнителя. Как утверждают авторы изобретения, предложенный способ обеспечивает улучшение технологических параметров, в том числе увеличение модуля упругости. Основным недостатком указанной композиции является то, что полимерный материал по изобретению не используется для 3D-печати.
Наиболее близкой по технической сущности и предполагаемому эффекту выступает композиционный материал по патенту на изобретение RU № 2688140 от 20.05.2019г. Изобретение относится к способу получения композиционного материала на основе полифениленсульфона, применяемого в качестве суперконструкционного полимерного материала для аддитивных 3D-технологий. Способ получения композиционного материала заключается в том, что предварительно сухую смесь 75-85 мас.% полифениленсульфона и 10 мас.% наполнителя экструдируют и гранулируют. Далее гранулят наполненного полифениленсульфона смешивают с гранулами поликарбоната, используемого в качестве пластификатора. Затем осуществляют экструзию полученной смеси. Поликарбонат берут в количестве 5-15 мас.%. В качестве наполнителя используют тальк. Изобретение позволяет повысить ударную вязкость и модуль упругости композиционного материала.
Задачей настоящего изобретения является создание композиционного материала, предназначенного для использования в области аддитивных технологий, а именно для 3D-печати, с улучшенными физико-механическими характеристиками.
Задача решается путем получения композиционного материала на основе смеси полимеров полифениленсульфона и полиэфиримида (ПФСн/ПЭИ) при соотношении 50:50 масс.ч., модификатора поликарбоната (ПК) и использование в качестве наполнителя органомодифицированной монтмориллонитовой глины (ОГ), при следующем соотношении, масс.ч.:
ПФСн/ПЭИ | 100 |
ПК | 23-28 |
ОГ | 0,5-2 |
в свою очередь органомодифицированная глина представляет собой продукт модификации монтмориллонитовой глины, катионообменной емкостью 95 мг-экв/100 г глины гуанидинсодержащими солями, в количестве 5 % от массы монтмориллонита.
В качестве полифениленсульфона предпочтительно использование марки Radel R5100, поликарбонат представляет собой гранулят марки Carbomix изготавливаемый в соответствии с ТУ 2226-002-13619882-2006, в качестве стекловолокна используются рубленные нити стекловолокна с длиной волокон 3 мм.
Органомодифицированная глина представляет собой продукт модификации монтмориллонитовой глины, катионообменной емкостью 95 мг-экв/100 г глины гуанидинсодержащими солями, в количестве 5 масс. % от массы монтмориллонита. В качестве гуанидинсодержащих солей предпочтительно использование веществ, следующего строения:
Органомодифицированную глину получают следующим образом: в суспензию монтмориллонитовой глины в воде, приготовленную перемешиванием на магнитной мешалке в течение 30 минут, добавляют гуанидинсодержащую соль и перемешивают еще 2 часа при комнатной температуре. Соотношение гуанидинсодержащих солей и монтмориллонитовой глины, масс. %: 95:5. Полученную органоглину промывают водой многократной декантацией и высушивают при комнатной температуре 24 часа.
Следующие примеры характеризуют, но не ограничивают изобретение.
Изготавливают композиционные материалы согласно изобретению (пример 1-6). Рецептуры композиционного материала приведены в таблице 1.
Пример.
В работающий смеситель последовательно загружают в количествах, предусмотренных рецептурой (табл.1), ПФСн/ПЭИ, ПК, и ОГ. Полученную порошкообразную смесь засыпают в экструдер и перерабатывают в зонах Ι-ΙV, при температуре 146 °С, 149 °С, 155 °С и 160 °С соответственно.
Из полученного гранулята изготавливают полимерную нить диаметром 1,75 мм, которая в последующем используется для получения образцов для испытаний методом 3D-печати. Образцы получены использованием 3D-принтера RobozeOne +400.
При исследовании композиционного материала были использованы следующие стандарты:
1. ГОСТ РФ 9550-81. Пластмассы. Методы определения модуля упругости при растяжении, сжатии и изгибе;
2. ГОСТ РФ 4648-2014 (ISO 178:2010). Пластмассы. Метод испытания на статический изгиб (с Поправкой);
3. ГОСТ РФ 11262-80 (СТ СЭВ 1199-78) Пластмассы. Метод испытания на растяжение (с Изменением N 1);
Результаты испытаний отображены в таблице 2.
Таблица 1
Состав композиционного материала
Наименование компонента композиции | Композиционный материал | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
ПФСн/ПЭИ | 100 | 100 | 100 | 100 | 100 | 100 |
ПК | 23 | 27 | 28 | 25 | 26 | 25 |
ОГ | 0,5 | 0,5 | 1 | 1,5 | 2 | 0,5 |
Таблица 2
Свойства полимерного композиционного материала
Наименование показателя | Композиция | Исходный материал | |||||
1 | 2 | 3 | 4 | 5 | 6 | ||
Модуль упругости при изгибе, ГПа | 6,15 | 8,9 | 8,53 | 13,27 | 7,0 | 7,6 | 2,55 |
Прочность при изгибе, МПа | 107,4 | 100 | 144 | 99,1 | 100,5 | 106,3 | 99,2 |
Модуль упругости при растяжении, ГПа | 4,9 | 3,8 | 4,9 | 4,3 | 5,61 | 3,97 | 2,10 |
Прочность при разрыве, МПа | 80,5 | 86,3 | 80,2 | 86,3 | 84,1 | 80,2 | 79 |
Технический результат - получение композиционных материалов, удовлетворяющих требованиям по физико-механическим характеристикам, предназначенных для аддитивных технологий.
Полимерный композиционный материал, предназначенный для аддитивных технологий, на основе смеси полифениленсульфона и полиэфиримида при соотношении 50:50 масс. ч. и органомодифицированной глины, отличающийся тем, что дополнительно включает в себя поликарбонат при следующем соотношении, масс. ч.:
Полифениленсульфон/полиэфиримид | 100 |
Поликарбонат | 23-28 |
Органомодифицированная глина | 0,5-2, |
причем органомодифицированная глина представляет собой продукт модификации монтмориллонитовой глины с катионообменной емкостью 95 мг-экв/100 г глины гуанидинсодержащими солями в количестве 5 % от массы монтмориллонита.