Способ детонационного синтеза поликристаллического алмаза



Способ детонационного синтеза поликристаллического алмаза
Способ детонационного синтеза поликристаллического алмаза
C01P2004/45 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2757661:

Общество с ограниченной ответственностью «СКН» (RU)

Изобретение относится к процессам получения синтетических поликристаллических алмазов. Способ детонационного синтеза поликристаллических алмазов осуществляют взрывом заряда в центре герметичной взрывной камеры в ледяной оболочке или в водяной оболочке. Заряд выполнен из смеси графита с гексогеном и/или октогеном при содержании графита 20%. После взрыва полученную суспензию алмазов в воде извлекают из камеры в отстойник. После отстоя осадок отжимают на центрифуге и подвергают очистке от окислов металлов и неалмазного углерода или сушат. Изобретение позволяет повысить средние размеры агрегатов детонационного алмаза поликристаллического модифицированного (ДАПМ) до 10-12 мкм. 4 ил., 2 пр.

 

Изобретение относится к процессам получения синтетических поликристаллических алмазов детонационного синтеза, в частности к способам детонационного синтеза.

В 70-х годах в ИХФ в Черноголовке начал отрабатываться процесс синтеза поликристаллических детонационных алмазов типа ДАЛАН (Детонационный алмаз Академии наук). Состав смеси шашки взрывного синтеза - неалмазные формы углерода - графит, сажа и высокоэнергетические взрывчатые вещества (ВЭВВ) - (гексогеном, октогеном, и др.). Шашка из смеси изготавливается прессованием. Алмазы, полученные из этих шашек путем подрыва во взрывной камере, отличаются размерами первичных частиц 6-15 нанометров, первичные частицы собраны в агрегаты со средним размером 4-6 мкм. Основное назначение продукта после деления на фракции - использование в шлифовальных и полировальных процессах.

При получении ДАЛАН (ДАГ) заряд (шашка) выполнена на основе гексоген и/или октоген и неалмазной формы углерода - коллоидный природный графит марки C-1 со средним размером частиц около 3-5 мкм (ДАГ) или сажи (ДАС). Синтезируемые таким образом порошки имеют поликристаллические частицы, аналогичные частицам алмазного порошка Mypolex, синтезируемого в металлических оболочках. Исследования показывают, что превращения неалмазный углерод - алмаз начинаются при 12 ГПа, а заканчиваются при 16 ГПа. Более низкие давления превращения в детонационной волне по сравнению с ударно-волновым синтезом (18-40 ГПа) объясняются более высокой температурой, до которой успевают прогреться частицы графита (В.В. Даниленко. Синтез и спекание алмаза взрывом. Москва. «Энергоатомиздат», 2003 г., стр. 81-82).

Способ получения детонационного алмаза, получаемого из шашки, изготовленной из смеси тротила и гексогена (ДНА), описан в частности в патенте RU2327637 (МПК C01B 31/08, B01J 3/06, B28B 3/00, опубл. 27.06.2008, патентообладатель Даниленко В.В.), согласно которому заряд (массой 20-40 кг) из сплава тротила с гексогеном или октогеном взрывают в центре герметичной взрывной камеры, в которой перед взрывом создается множество водяных струй, движущихся радиально от стенок камеры к заряду. Взрыв производят в момент, когда сталкивающиеся вокруг заряда струи образуют водяную оболочку с массой не менее десяти масс заряда. После взрыва полученную суспензию наноалмазов в воде откачивают из камеры в отстойник, после отстоя осадок отжимают на центрифуге и подвергают очистке от окислов металлов и неалмазного углерода или сушат. Исходный продукт - шашка представляет собой заряд из сплава тротила с гексогеном или октогеном большой массы (20-40 кг).

Полученный таким и аналогичными способами (водяная и ледяная оболочки) продукт из шашки - смесь тротила и гексогена, характеризуется размерами первичных частиц 3-10 нанометров, первичные частицы собраны в агрегаты размером до 600 нм, при этом водяная оболочка увеличивает содержание наноалмаза в шихте по сравнению с сухим синтезом с 35-42% до 55-75%. Таким образом, при получении ДНА в качестве исходного продукта применяют заряд (шашку) из сплава тротила с гексогеном или октогеном, а необходимое количество углерода обеспечивается за счет углерода, входящего в молекулу тротила.

Применение водяной оболочки для увеличения содержания поликристаллического алмаза ДАЛАН эффекта не дает, поскольку количество алмаза определяется процентным содержанием графита в шашке.

Технический результат заявляемого изобретения направлен на создание детонационного алмаза поликристаллического модифицированного (ДАПМ), в котором образованные агрегаты имеют повышенные средние размеры - 10-12 мкм по сравнению с 5-6 мкм у ДАЛАНа.

Поставленный результат достигается тем, что способ детонационного синтеза поликристаллических алмазов осуществляют взрывом зарядов в центре герметичной взрывной камеры в водяной или ледяной оболочке, при этом заряд выполнен из смеси графита с гексогеном и/или октогеном при содержании графита 20%. После взрыва полученную суспензию алмазов в воде откачивают из камеры в отстойник, после отстоя осадок отжимают на центрифуге и подвергают очистке от окислов металлов и неалмазного углерода или сушат.

Детонационное спекание поликристаллических алмазов имеет свои особенности, но механизм превращения порошка в прочный поликристалл - общий, независимо от способа создания давления и температуры. Поэтому целесообразно проанализировать процессы по аналогии со спеканием поликристаллических алмазов в статических условиях. Прежде всего, спекание под давлением всегда сопровождается пластической деформацией частиц алмаза, скорость которой максимальна при детонационном сжатии. При этом, все процессы формирования - уплотнение, структурные и фазовые превращения идут одновременно. Деформированные частицы алмаза имеют высокую концентрацию вакансий. Формирование контактов между частицами идет за счет диффузионной пластичности, и конечная структура определяется давлением, температурой и временем протекания процесса (В.В. Даниленко. Синтез и спекание алмаза взрывом. Москва. «Энергоатомиздат», 2003 г., стр. 26-29). Таким образом, свойства взрывных поликристаллических алмазов зависят от условий синтеза и вида углеродного материала - наполнителя.

Подрывы зарядов графит (сажа) - высокоэнергетическое взрывчатое вещество - гексоген и/или октоген в водяной или ледяной оболочке снижает скорость разгрузки продуктов детонации, увеличивая время воздействия рабочего давления и повышая эффективность охлаждения, снижая уровень графитизации.

Оболочка для таких зарядов может быть организована, например, так, как описана в патенте RU 2327637 - водное орошение, ледяная оболочка, кроме того, водяной мешок с погруженным в него зарядом, подрыв в бассейне с водой.

Полученные результаты с использованием заявляемого способа позволили получить увеличение среднего размера агрегатов, увеличение плотности (твердости) упаковки поликристаллов алмаза, что расширило диапазоны использования продукта и существенно уменьшило количество неиспользуемой части полидисперсного порошка (до 40%) из-за размерности несоответствующей потребностям производства.

Заявляемый способ подтверждается примерами конкретного исполнения, описанными ниже, а также графическими материалами.

Пример 1. Сравнивается результат синтеза заряда-шашки, изготовленной из смеси высоко энергетического вещества, например гексогена и/или октогена с коллоидным графитом - 20%. Шашки цилиндрической формы весом 1,8 кг, изготовлены прессованием. Производится серия из тридцати подрывов в газовой среде и тридцати подрывов в ледяной оболочке. После очистки полученного алмазного шихтового материала производится сравнение размерных характеристик полученных материалов - полидисперсного поликристаллического алмазного порошка сухого синтеза и синтеза в водной оболочке. Перед синтезом проводится серия подрывов в камере для выжигания кислорода.

На фиг. 1. показана диаграмма распределения объемной концентрации неразделенного на фракции порошка ДАЛАН по размеру при условии синтеза в газовой среде. На фиг. 2. показана диаграмма распределения объемной концентрации неразделенного на фракции порошка ДАП по размеру при условии синтеза в ледяной оболочке.

Пример 2. Сравнивается результат синтеза заряда-шашки, изготовленной из смеси высоко энергетического вещества, например гексогена и/или октогена с коллоидным графитом - 20%. Шашки дискообразной формы весом 1,6 кг, изготовлены прессованием. Производится серия из тридцати подрывов в газовой среде и тридцати подрывов в водной оболочке. После очистки полученного алмазного шихтового материала производится сравнение размерных характеристик полученных материалов - полидисперсного поликристаллического алмазного порошка сухого синтеза и синтеза в водной оболочке. Перед синтезом проводится серия подрывов в камере для выжигания кислорода.

На фиг. 3. показана диаграмма распределения объемной концентрации неразделенного на фракции порошка ДАЛАН по размеру при условии синтеза в газовой среде. На фиг. 4. показана диаграмма распределения объемной концентрации неразделенного на фракции порошка ДАП по размеру при условии синтеза в водной оболочке.

На графиках, полученных после предварительного диспергирования в воде на лазерном анализаторе размеров частиц Malvern - независимо от формы заряда, наличие водяной (ледяной) оболочки смещает размерные пики среднего размера в порошке полидисперсного поликристаллического алмаза с 4-5 мкм у ДАЛАНа (фиг.1, фиг. 3) до 10-11 мкм у ДАПа (фиг. 2, фиг. 4).

Таким образом, мы получаем продукт, имеющий улучшенные физические и потребительские свойства.

Продукт синтеза в газовой среде после разделения на фракции имеет до 30-40% продукта по своему размеру невостребованного в производстве. При синтезе в водяной оболочке процент невостребованного из-за среднего размера алмазного порошка не превышает 5%.

Способ детонационного синтеза поликристаллических алмазов осуществляют взрывом заряда в центре герметичной взрывной камеры в ледяной оболочке или в водяной оболочке, а после взрыва полученную суспензию алмазов в воде извлекают из камеры в отстойник, после отстоя осадок отжимают на центрифуге и подвергают очистке от окислов металлов и неалмазного углерода или сушат, отличающийся тем, что заряд выполнен из смеси графита с гексогеном и/или октогеном при содержании графита 20%.



 

Похожие патенты:
Изобретение относится к технологии производства материала высокой теплопроводности путем постростовой обработки монокристаллов алмаза. Способ характеризуется тем, что предварительно искусственно синтезируют алмаз типа Ib, или Ib+Ia, или Ia+Ib методом высоких давлений и высоких температур (НРНТ) c начальной концентрацией в кристаллической решетке одиночных изолированных атомов азота в позиции замещения (дефектов С) в диапазоне от 1,76·1018 см-3 до 1,4·1020 см-3, а затем подвергают его облучению электронами с энергией от 1 до 5 МэВ и дозой облучения от 1·1018 до 1·1019 см-2, чем вызывают перезарядку части образовавшихся одиночных изолированных вакансий из нейтрального в отрицательное зарядовое состояние и обеспечивают повышение теплопроводности алмаза при температурах в диапазоне 300-340 К.

Изобретение относится к технологии создания внутри алмазов изображений, несущих информацию различного назначения, например, кода идентификации, метки, идентифицирующие алмазы. Способ записи информации внутри кристалла алмаза 1 включает проектирование информационного элемента в виде метки с помощью устройства 10, подготовку поверхности кристалла, позиционирование кристалла с использованием средств 2, 5, 6, 7, 8, 9 для создания информационного элемента, формирование информационного элемента путем воздействия излучением лазера 11 на кристалл, контроль создания информационного элемента и корректировку информационного элемента, при этом предварительно кристалл алмаза 1 размечают на бриллианты, проводят исследование кристалла на наличие макроскопических дефектов, создают его объемную цифровую модель с учетом внутренней дефектности кристалла, в том числе топологии поверхности, проектирование информационного элемента осуществляют так, чтобы он находился в требуемом месте будущего бриллианта, и осуществляют виртуальную привязку, позиционирование и ориентацию записываемого в объем кристалла информационного элемента относительно элементов огранки будущих бриллиантов, после проектирования производят расчет траектории хода лучей 12, задают параметры - размеры и геометрию фокальной области излучения через выбор точек приложения излучения, разделение луча на части в устройстве 16 и заведение всех частей луча под разными углами, маскирование части профиля луча, на основе расчета производят выбор интегрального флюенса в месте записи ниже порогового флюенса, при котором происходит локальное превращение алмаза в графит или иную неалмазную форму углерода, или образование в кристалле трещин или расколов, проводят подготовку поверхности кристалла, при позиционировании кристалла совмещают его трехмерную модель с его реальным положением, формирование информационного элемента производят системой линз 19 путем создания внутри кристалла 1 интерференционного поля путем пересечения двух или более пучков когерентного излучения лазеров с ультракороткими импульсами длительностью от 30 фс до 10 пс и энергией от 1 нДж до 40 мкДж с длиной волны от 240 до 2200 нм, приводящих к возникновению субмикронных периодических структур в записываемой области, после чего осуществляют контроль создания информационного элемента устройством 21 на основе топологии поверхности кристалла алмаза путем расчета хода лучей и их преломления для точного позиционирования информационного элемента для исключения эффекта кажущегося изменения положения и формы информационного элемента.

Изобретение может быть использовано при получении синтетических поликристаллических алмазов. Способ детонационного синтеза поликристаллического алмаза включает получение исходного продукта из высокоэнергетического взрывчатого вещества - гексогена и/или октогена и углеродсодержащего компонента - коллоидного графита или сажи.
Изобретение относится к обработке алмазных материалов для их использования в высокотехнологичных областях науки и техники. Способ обработки алмазного материала включает введение в контакт алмазного материала с металлической пластиной, нагрев контактных поверхностей в инертной атмосфере и выдержку, при этом в качестве материала металлической пластины берут сплав железа с углеродом, содержащий 0,5-1 мас.% углерода, нагрев контактных поверхностей осуществляют до достижения температуры 900-1100°С, а контакт алмазного материала с металлической пластиной осуществляется под нагрузкой 15,0-40,0 кПа.

Изобретение может быть использовано при изготовлении режущего инструмента. Способ получения поликристаллического алмазного материала включает помещение в реакционную ячейку камеры высокого давления в зоне максимальной температуры нагрева стержня из металла-катализатора, имеющего торцевую рабочую поверхность, и углеродосодержащего материала, образующего вокруг стержня оболочку.

Изобретение относится к химической технологии получения поликристаллического кремния водородным восстановлением трихлорсилана водородом на кремниевые стержни-основы в безотходном режиме. Способ включает приготовление исходной парогазовой смеси в испарителе SiHCl3 1 барботированием водорода через слой трихлорсилана с мольным отношением H2:SiHCl3 = (3,0-3,5):1 с последующей ее подачей в реактор восстановления 2, где осуществляют осаждение поликристаллического кремния на нагретых до 1100-1150°C кремниевых стержнях, подачу отходящей из реактора восстановления 2 парогазовой смеси, состоящей из водорода, тетрахлорида кремния, трихлорсилана и хлористого водорода, в реактор-утилизатор 3, в котором при температуре 315-350°C осуществляют отделение хлористого водорода от отходящей из реактора восстановления 2 парогазовой смеси с получением смеси водорода, трихлорсилана и тетрахлорида кремния в соотношении SiHCl3/SiCl4 = 50%/50%, далее полученную смесь направляют в установку мембранного разделения 4 для отделения водорода на полимерных мембранах при температуре нагрева до 100°C и перепаде давлений, равном 8 атм, который возвращают в испаритель SiHCl3 1, а смесь трихлорсилана и тетрахлорида кремния подвергают конденсации 5 и ректификации 6, после чего трихлорсилан возвращают в испаритель SiHCl3 1, а тетрахлорид кремния направляют в испаритель SiCl4 7, в котором осуществляют барботирование водорода через слой тетрахлорида кремния с образованием парогазовой смеси с мольным соотношением H2:SiCl4 = (3,0-6,5):1, которую далее подают в плазмохимический реактор 8 для синтеза трихлорсилана, откуда парогазовую смесь, состоящую из водорода, тетрахлорида кремния, трихлорсилана и хлористого водорода, направляют в реактор-утилизатор 3 для отделения хлористого водорода.

Изобретение относится к способу получения поликристаллического алмазного материала с отверстием, проходящим в осевом направлении, который может служить заготовкой для изготовления волочильного инструмента. Способ включает помещение в реакционную ячейку 1 камеры высокого давления вставки 4 из металла-катализатора и в контакте со вставкой стержня 5, выполненного из металла с температурой плавления, превышающей температуру плавления металла-катализатора и смачиваемого металлом-катализатором.

Изобретение относится к области выращивания кристаллов и может быть использовано для получения слоев алмаза большой площади на подложках из монокристаллического кремния. Способ выращивания слоев алмаза, включающий нагрев в вакуумной среде в диапазоне температур от 910°С до 1150°С порошка алмазов в графитовой лодочке, над поверхностью которой размещена пластина монокристаллического кремния, причем лодочка с пластиной размещена в зазоре между двумя параллельными пластинами из углеродной фольги, прогреваемыми прямым пропусканием переменного электрического тока, а величина тока в верхней пластине меньше, чем в нижней.

Изобретение может быть использовано при изготовлении бурильных и режущих элементов, например бурильного долота для роторного бурения подземных пластов. Осколки алмаза, оксид и диоксид углерода инкапсулируют в сосуде в отсутствие металлического катализатора, герметизируют сосуд и воздействуют давлением не менее 4,5 ГПа и температурой не менее 1400°С, в результате чего между осколками алмаза образуется поликристаллический алмаз с межкристаллическими связями.

Изобретение относится к синтезу монокристаллического CVD алмазного материала, который может быть использован в оптике, ювелирных изделиях, в качестве подложек для дальнейшего CVD роста алмазов, механических применениях, в области квантового зондирования и обработки информации. Раскрыт монокристаллический CVD алмазный материал, содержащий общую концентрацию азота по меньшей мере 3 млн-1, измеренную методом масс-спектрометрии вторичных ионов (МСВИ); и низкое оптическое двулучепреломление, так что в образце монокристаллического CVD алмазного материала, имеющем площадь по меньшей мере 1,3 мм × 1,3 мм и измеренном с использованием размера пикселя площадью в диапазоне от 1×1 мкм2 до 20×20 мкм2, максимальное значение Δn[среднее] не превышает 1,5×10-4, где Δn[среднее] - среднее значение разности между показателем преломления для света, поляризованного вдоль медленной и быстрой осей, усредненной по толщине образца.

Изобретение относится к технологии нанесения твердых износостойких наноструктурированных покрытий из аморфного алмазоподобного углерода и может быть использовано в металлообработке, машиностроении, медицине, электронике, солнечной энергетике, оптоэлектронике, фотонике, в производстве жидкокристаллических дисплеев, защитных покрытий с высокой твердостью для повышения эксплуатационных свойств поверхности изделий различного функционального назначения.
Наверх