Температурный компенсатор тросовой передачи космического аппарата

Изобретение относится к средствам соединения гибких элементов, используемых, в частности, в тросовых передачах для раскрытия панелей солнечной батареи космического аппарата. В предлагаемом компенсаторе концы соединяемых частей проволочного троса имеют наконечники, к одному из которых крепится прорезная втулка с фланцем. В отверстие втулки с возможностью перемещения относительно нее установлен шток с резьбой и концевым выступом, упирающимся в кольцо, надетое на втулку. Между кольцом и фланцем установлена пружина сжатия, обеспечивающая зазор между выступом штока и дном прорези втулки. Другой наконечник соединён со штоком посредством тандера, поворотом которого настраивается указанный зазор в зависимости от величины температурных деформаций соответствующего элемента солнечной батареи. Техническим результатом является повышение эксплуатационно-технологических характеристик тросовой передачи. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к космической технике, в частности используется в конструкции тросовых передач для раскрытия элементов батареи солнечной космического аппарата (КА).

Из существующего уровня техники известен компенсатор, описанный в изобретении «Пружинный компенсатор удлинения проводов» (SU 339447 A1,В60М 1/26), содержащий пружину и ролик с переменным радиусом кривизны и круговой канавкой. Пружину и провода соединяет трос, намотанный на канавку ролика. Ролик обеспечивает постоянное натяжение провода, независимо от изменения силы пружины при изменении ее длины. Кривизна ролика зависит характеристики пружины.

Недостатком описанного выше устройства является то, что ход пружины не имеет ограничения, так как провод воспринимает только статические нагрузки, вызванные, в том числе, температурными деформациями. В случае динамических знакопеременных нагрузок, которые могут возникать в тросовых передачах раскрытия элементов батареи солнечной космического аппарата, компенсатор с такой пружиной будет воспринимать эти нагрузки и создавать дополнительные колебания, увеличивая нагрузки, возникающие в тросовой передаче и других элементах раскрытия батареи солнечной КА.

Из существующего уровня техники наиболее близким к заявленному решению (прототипом) является температурный компенсатор, описанный в изобретении «Передача для перемещения снабженных солнечными элементами панелей на космическом аппарате» (патент RU 2158702 C2, B64G 1/22, B64G 1/44, D07B 1/16, H01L 31/045), заключающийся в том, что проволочный трос снабжен жестко соединенной с ним пластиковой оболочкой с армированными волокнами. Изменение длины проволочного троса при изменении температуры зависит от коэффициента теплового расширения, площади поперечного сечения, и схемы армирования пластиковой оболочки и согласовано с температурным изменением длины раскрываемого элемента батареи солнечной.

Недостатком описанного выше устройства является то, что температурный компенсатор является частью конструкции проволочного троса и изготавливается под конкретное место эксплуатации. Это приводит к тому, что в случае изменения конструкции элемента космического аппарата, его замены или доработки, влекущей за собой изменение величины температурных деформаций этого элемента, может появиться необходимость изготовления нового температурного компенсатора, а соответственно и проволочного троса, обеспечивающего условие согласования температурных изменений длины тросовой передачи и раскрываемого элемента батареи солнечной КА. Таким образом, конструкция тросовой передачи становиться менее технологичной и сложной в эксплуатации на этапе изготовления и испытаний.

Для заявленного устройства выявлены следующие общие существенные признаки: температурный компенсатор тросовой передачи космического аппарата, содержащий проволочный трос.

Технической проблемой, на решение которой направлено заявляемое изобретение является отсутствие крепления звеньев штанги батареи солнечной в ее сложенном положении, приводящее к соударениям элементов космического аппарата.

Поставленная техническая проблема решается тем, что температурный компенсатор тросовой передачи космического аппарата содержит проволочный трос, который имеет разрыв, образующий два свободных конца. На первом конце проволочного троса установлен наконечник, к которому крепится прорезная втулка с фланцем. В отверстие прорезной втулки со стороны наконечника установлен с возможностью свободного перемещения шток с резьбой, на конце которого имеется выступ, попадающий в глухую прорезь втулки, и упирающийся в кольцо, надетое на прорезную втулку. При этом между кольцом и фланцем прорезной втулки установлена пружина сжатия, обеспечивающая зазор между выступом штока и дном прорези втулки. На втором конце проволочного троса установлен наконечник с резьбой, имеющей направление противоположное направлению резьбы штока, и соединённый со штоком посредством тандера. Тандер выполнен в виде втулки с внутренней резьбой, которая до середины этой втулки имеет разное направление. Величина зазора между выступом штока и дном прорези втулки соответствует заданному значению температурной деформации соответствующего раскрываемого элемента батареи солнечной.

На фиг. 1 представлена конструкция температурного компенсатора тросовой передачи космического аппарата.

На фиг. 2 представлен процесс настройки температурного зазора.

Заявленный температурный компенсатор тросовой передачи космического аппарата содержит проволочный трос 1, который имеет разрыв, образующий два свободных конца. На первом конце проволочного троса 1 установлен наконечник 2, к которому крепится прорезная втулка 3 с фланцем. В отверстие прорезной втулки со стороны наконечника установлен с возможностью свободного перемещения шток 4 с резьбой, на конце которого имеется выступ 5, попадающий в глухую прорезь втулки, и упирающийся в кольцо 6, надетое на прорезную втулку 3. При этом между кольцом и фланцем прорезной втулки установлена пружина сжатия 7, обеспечивающая зазор s между выступом штока и дном прорези втулки 3. На втором конце проволочного троса установлен наконечник 8 с резьбой, имеющей направление противоположное направлению резьбы штока, и соединённый со штоком посредством тандера 9. Тандер выполнен в виде втулки с внутренней резьбой, которая до середины этой втулки имеет разное направление. Величина зазора s между выступом штока и дном прорези втулки соответствует заданному значению температурной деформации соответствующего элемента батареи солнечной.

Температурный компенсатор тросовой передачи космического аппарата работает следующим образом. Исходя из величины изменения температурных деформаций раскрываемого элемента батареи солнечной настраивается зазор s, смещая шток путем поворота тандера в направлении Б или В и сжимая или отпуская пружину соответственно. После раскрытия элемента батареи солнечной:

- при его эксплуатации в экстремально низких температурах длина раскрываемого элемента уменьшается, следовательно зазор s увеличивается (пружина сжатия 7 посредством кольца 6 толкает шток 4 в направлении Б, сохраняя натяжение проволочного троса 1, равное усилию пружины);

- при его эксплуатации в экстремально высоких температурах длина элемента увеличивается, следовательно зазор s уменьшается (пружина сжатия 7 посредством кольца 6 сжимается шток 4 в направлении В, сохраняя натяжение проволочного троса равное 1, равное усилию пружины).

Техническим результатом изобретения является повышение эксплуатационных характеристик и технологичности конструкции тросовой передачи за счёт использования температурного компенсатора с регулировкой возможной температурной деформации проволочного троса относительно раскрываемого элемента космического аппарата.

1. Температурный компенсатор тросовой передачи космического аппарата, содержащий проволочный трос, отличающийся тем, что проволочный трос имеет разрыв, образующий два свободных конца, при этом на первом конце проволочного троса установлен наконечник, к которому закреплена прорезная втулка с фланцем, в отверстие прорезной втулки со стороны наконечника установлен с возможностью свободного перемещения шток с резьбой, на конце которого имеется выступ, попадающий в глухую прорезь втулки и упирающийся в кольцо, надетое на прорезную втулку, а между кольцом и фланцем прорезной втулки установлена пружина сжатия, обеспечивающая зазор между выступом штока и дном прорези втулки, при этом на втором конце проволочного троса установлен наконечник с резьбой, имеющей направление, противоположное направлению резьбы штока, и соединённый со штоком посредством тандера.

2. Температурный компенсатор тросовой передачи космического аппарата по п. 1, отличающийся тем, что тандер выполнен в виде втулки с внутренней резьбой, которая до середины этой втулки имеет разное направление.

3. Температурный компенсатор тросовой передачи космического аппарата по п. 1, отличающийся тем, что величина зазора между выступом штока и дном прорези втулки соответствует заданному значению температурной деформации соответствующего элемента солнечной батареи.



 

Похожие патенты:

Изобретение относится к нетрадиционным двигательным системам, в частности, космических транспортных средств (КТС) и основано на известном эффекте Казимира. Способ состоит в преобразовании квантовых вакуумных флуктуаций в механическое движение, для чего используют двухслойную незаряженную проводящую (нано)пленку.

Изобретение относится к двигательным системам космических летательных аппаратов (КЛА). Предлагаемый способ включает генерирование лазерного излучения и его подачу на мишень.

Предлагаемое изобретение относится к области сетей спутниковой связи (ССС), а именно к персональной подвижной спутниковой связи (ППСС) на основе сети низкоорбитальных спутников-ретрансляторов (НСР). Техническим результатом заявленного изобретения является обеспечение глобального массового доступа абонентов к услугам бесперебойной связи с использованием абонентом малоразмерного персонального носимого абонентского терминала, ПАТ (формат «трубка в руке»).

Группа изобретений относится к формированию архитектуры (состава и структуры) орбитальных группировок космических аппаратов (КА) дистанционного зондирования Земли (ДЗЗ). Способ и система основаны на итерационном параметрическом анализе целевого функционирования бортовой аппаратуры и баллистических параметров КА группировки.

Изобретение относится к области обеспечения астероидной безопасности Земли космическими средствами. Способ заключается в том, что наблюдательные приборы (НП) устанавливают на спутнике Земли (например, Луне или ИСЗ), сообщая тем самым НП равномерное вращение с орбитальной угловой скоростью спутника.

Изобретение относится к космической технике, а более конкретно для создания малых космических аппаратов. Способ сборки несущей конструкции малого космического аппарата заключается в том, что сборку корпуса проводят на основании.

Изобретение относится к малоразмерному космическому ракетостроению, специализирующемуся на создании высокоточного метательного оружия с использованием кинетической энергии готовых поражающих элементов (ГПЭ) в качестве главного поражающего фактора, а также при использовании вакуума околоземного космического пространства в качестве среды для разгона поражающих элементов.

Изобретение относится к способам запуска полезных нагрузок на околоземные орбиты с помощью многоступенчатых ракет с разгонными блоками. Согласно способу, на отделяемые элементы ракеты (в т.ч.

Изобретение относится к области ракетно-космической техники и летательных аппаратов легче воздуха. Аэростатный ракетно-космический комплекс включает дирижабль, ракету космического назначения, транспортно-пусковой контейнер, наземную стартовую площадку с опорно-удерживающим устройством и транспортно-установочный агрегат.

Группа изобретений относится к конструкции и использованию сервисного спутника (СС) (100), снабженного по меньшей мере двумя маневровыми двигателями (101, 103), одним контроллером и двумя стыковочными поворотными относительно корпуса (110) рычагами (108) с концевыми захватами (109). Захваты предназначены для сцепления со стыковочным шпангоутом (не показан), выступающим над поверхностью обслуживаемого орбитального спутника (ОС).

Изобретение относится к ракетным двигателям космических летательных аппаратов (КЛА), преимущественно с внешним подводом энергии. Предлагаемый двигатель состоит из лазерного источника и мишени с трудноиспаряемым веществом (уд.
Наверх