Способ упрочнения режущих частей культиваторных лап точечной электромеханической обработкой

Изобретение относится к способу упрочнения режущих частей культиваторной лапы точечной электромеханической обработкой. Способ включает электромеханическую обработку поверхности режущих частей культиваторной лапы путем создания усилия прижима и плотностью тока до 109 А/м2 с образованием зон упрочнения на глубину до 3 мм. Обработку проводят вдоль режущей части лапы участками диаметром 6-8 мм в два ряда, причем центры участков в рядах находятся на одной линии от края режущих частей культиваторной лапы на расстоянии 3-4 мм для первого ряда, на расстоянии 8-10 мм для второго ряда и на расстоянии 10-14 мм между соседними участками в рядах. Техническим результатом изобретения является повышение долговечности культиваторных лап за счет повышения прочности, твердости и износостойкости к абразивному изнашиванию режущих лезвий с обеспечением эффектов самозатачивания и формирования пилообразного лезвия в процессе работы изделий. 1 ил.

 

Изобретение относится к области металлообработки, касается методов поверхностного упрочнения рабочих органов сельскохозяйственной техники электромеханической обработкой с целью повышения их долговечности при абразивном износе.

Известны способы упрочнения рабочих органов сельскохозяйственной техники, (см. Технология ремонта машин / Под ред. Е.А. Пучина. - М.: КолосС, 2007. - 487 с) при которых применяют наплавку их поверхности металлами и сплавами, имеющими повышенные прочностные свойства, что повышает их износостойкость и обеспечивает эффект самозатачивания. Однако при наплавках применение дополнительных материалов значительно увеличивает стоимость изделий, сильное термическое влияние на металл приводит к значительным деформациям деталей.

Известен способ упрочнения деталей из среднеуглеродистых и высокоуглеродистых сталей (Патент № 2270259 принят за прототип), включающий упрочнение путем кратковременного высокотемпературного воздействии тока силой 16 кА с нанесением на поверхность детали пятен контакта в шахматном порядке или по линиям армирования.

В результате применения этого способа формируются точечные упрочненные участки, что повышает износостойкость деталей, не требуется дальнейшей механической обработки и расхода дополнительных материалов. Однако данный метод не обеспечивает эффекта самозатачивания, износостойкость повышается частично, так как упрочнению подвергаются лишь небольшие участки.

Известен способ упрочнения лемехов плугов (Патент № 2460810 принят также за прототип), включающий электромеханическую обработку поверхности лемеха при плотности тока до 109 А/м2 параллельными друг другу непрерывными линиями, образующими зоны упрочнения на глубину до 3 мм, зоны упрочнения имеют ширину 3,5…7 мм и располагаются под углом 40…55° к лезвию лемеха на расстоянии между ними 10…30 мм.

В результате применения этого способа на поверхности лемеха образуются упрочненные чередующиеся зоны твердостью до 10 ГПа, что повышает их износостойкость при абразивном трении. Однако применение данного способа обеспечивает эффект самозатачивания только в местах касания упрочненных линий режущих лезвий лемеха, что лишь частично повышает долговечность лемеха.

Технический результат предлагаемого изобретения - это повышение долговечности культиваторных лап за счет повышения прочности, твердости и износостойкости к абразивному изнашиванию режущих лезвий с обеспечением эффекта самозатачивания и формирования пилообразного лезвия в процессе работы изделий.

Указанный результат достигается тем, что обработку проводят вдоль режущей части лапы участками диаметром 6-8 мм в два ряда, причем центры участков в рядах находятся на одной линии от края режущих частей культиваторной лапы на расстоянии 3-4 мм для первого ряда, на расстоянии 8-10 мм для второго ряда и на расстоянии 10-14 мм между соседними участками в рядах.

На чертеже изображена часть культиваторной лапы с упрощенной схемой предлагаемого способа упрочнения, где 1 - зона лезвия лапы без упрочнения, 2 - крепежные отверстия лапы, 3 - зоны упрочнения лезвия (показаны темным цветом).

Режущая часть культиваторной лапы упрочняется точечной электромеханической обработкой путем создания усилия прижима и плотностью тока до 109 А/м2 вдоль режущей части лапы участками диаметром 6…8 мм в два ряда. Центры участков в рядах находятся на одной линии от края режущих частей культиваторной лапы на расстоянии 3-4 мм для первого ряда, на расстоянии 8-10 мм для второго ряда и на расстоянии 10-14 мм между соседними участками в рядах.

Соблюдение указанных параметров точечной электромеханической обработки позволяет сформировать на режущей части культиваторной лапы полусферические упрочненные зоны диаметром 6…8 глубиной до 3 мм твердостью до 10 ГПа. Это обеспечивает в процессе работы эффект самозатачивания за счет более быстрого износа нижних не упрочненных слоев лезвия.

Наличие вдоль режущей кромки лезвия участков без упрочнения обеспечивает их более интенсивный износ в процессе работы, что приводит к формирования пилообразного лезвия.

Это обеспечивает повышение долговечности за счет сохранения высокой режущей способности культиваторной лапы в процессе ее эксплуатации. Величины диапазонов упрочненных и неупрочненных зон лезвия культиваторной лапы связаны с ее конструктивными особенностями и с условиями трения изделий в процессе работы.

Режимы электромеханической обработки (плотность тока, усилие прижатия инструмента к поверхности детали, время электромеханического воздействия на участок, материал и форма инструмента) принимаются исходя из задач и требований технологического процесса.

Таким образом, при обработке по данному способу режущая часть культиваторной лапы в необходимых участках упрочняется твердостью до 10 ГПа на глубину до 3 мм, что повышает прочность и износостойкость к абразивному изнашиванию режущих частей лапы с обеспечением эффектов самозатачивания и формирования пилообразного лезвия в процессе работы изделий.

Способ упрочнения режущих частей культиваторной лапы точечной электромеханической обработкой, включающий электромеханическую обработку поверхности режущих частей культиваторной лапы путем создания усилия прижима и плотностью тока до 109 А/м2 с образованием зон упрочнения на глубину до 3 мм, отличающийся тем, что обработку проводят вдоль режущей части лапы участками диаметром 6-8 мм в два ряда, причем центры участков в рядах находятся на одной линии от края режущих частей культиваторной лапы на расстоянии 3-4 мм для первого ряда, на расстоянии 8-10 мм для второго ряда и на расстоянии 10-14 мм между соседними участками в рядах.



 

Похожие патенты:
Изобретение относится к области термического упрочнения высокоуглеродистых сплавов и может быть использовано для изготовления рабочих органов орудий для разработки грунтов. Для повышения износостойкости режущей части рабочих органов и получения ледебуритного слоя стабильной глубины 1,4-1,5 мм упрочнению подвергают режущую часть рабочих органов, выполненных из высокопрочного чугуна ВЧ 50, при этом используют плазму дугового разряда обратной полярности между электродом и упрочняемой поверхностью, причем осуществляют осевые продольные колебания вольфрамового электрода с частотой 4-8 Гц и перемещают его по упрочняемой поверхности со скоростью 0,3-1,0 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,1 с.
Изобретение относится к области термического упрочнения высокоуглеродистых сплавов и может быть использовано для изготовления рабочих органов орудий для разработки грунтов. Для повышения износостойкости режущей части рабочих органов и получения ледебуритного слоя глубиной 1,4-1,5 мм проводят упрочнение режущей части рабочих органов из высокопрочного чугуна ВЧ50, используя плазму дугового разряда обратной полярности между вольфрамовым электродом и упрочняемой поверхностью, при этом осуществляют осевые продольные колебания электрода с частотой 4-8 Гц и перемещают его по упрочняемой поверхности со скоростью 0,3-1,0 см/с, а время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,1 с.
Изобретение относится к области термического упрочнения высокоуглеродистых сплавов путем использования плазмы дугового разряда между упрочняемой поверхностью и вольфрамовым электродом и может быть использовано при производстве рабочих органов орудий для разработки грунтов. Для получения ледебуритного слоя глубиной 1,2-1,3 мм, повышения износостойкости лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ 50 используют плазму дугового разряда обратной полярности между электродом и упрочняемой поверхностью с перемещением электрода вдоль упрочняемой поверхности пульсирующей дугой, при этом упрочняют лезвие рабочих органов, выполненных из высокопрочного чугуна ВЧ 50, в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 4-8 Гц и перемещается по упрочняемой поверхности со скоростью 0,4-1,5 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,08 с.
Изобретение относится к области термического упрочнения высокоуглеродистых сплавов путем использования плазмы дугового разряда между деталью и вольфрамовым электродом и может быть использовано при производстве рабочих органов орудий для разработки грунтов. Для получения стабильной глубины ледебуритного слоя, равной 0,9-1,1 мм, повышения износостойкости лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ50 осуществляют упрочнение режущей части рабочего органа с использованием плазмы дугового разряда обратной полярности между электродом и упрочняемой поверхностью, в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 4-8 Гц и перемещается по упрочняемой поверхности со скоростью 0,4-1,5 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,06-0,07 с.
Изобретение относится к области металлургии. Для повышения износостойкости и эксплуатационных характеристик лезвий рабочих органов почвообрабатывающих орудий способ упрочнения лезвия рабочего органа почвообрабатывающего орудия из высокопрочного чугуна включает нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности с помощью вольфрамового электрода, подключенного к источнику постоянного тока, при его перемещении по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия и вращением вокруг вертикальной оси, при этом линейное перемещение электрода вдоль лезвия за один оборот вокруг своей оси составляет 3 мм, а частота вращения 25 мин-1, а траектория вращения вокруг своей оси является эллиптической, где больший параметр соответствует ширине лезвия - L, а меньший составляет 0,37L.
Изобретение относится к сельскохозяйственному машиностроению, в частности к изготовлению рабочих органов почвообрабатывающих орудий. Способ термоупрочнения лезвия почвообрабатывающего орудия из высокопрочного чугуна ВЧ70 включает нагрев поверхности тыльной стороны лезвия почвообрабатывающего орудия электрической дугой обратной полярности с использованием электрода, перемещение указанного электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромке лезвия почвообрабатывающего орудия и вращением вокруг вертикальной оси.

Изобретение относится к области металлургии и может быть использовано, в частности, при закалке режущего инструмента из низкоуглеродистых борсодержащих сталей. Для получения эффекта самозатачивания на режущих кромках инструмента предварительно на режущую кромку устанавливают защитный экран, инструмент с экраном помещают в индуктор, погруженный в охлаждающую среду, содержащую, в мас.%: этиленгликоль 15-19, уротропин 0,5-1,5, вода - остальное, при этом температуру среды поддерживают от 4 до 8°С, а нагрев детали осуществляют циклами 3-5 раз, в интервале температур от 1150-1270°С до 650-730°С.
Изобретение относится к сельскохозяйственному машиностроению, в частности к изготовлению рабочих органов почвообрабатывающих орудий. Способ упрочнения лезвий рабочих органов почвообрабатывающих орудий включает нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности при перемещении электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия и вращением вокруг вертикальной оси, при этом рабочий орган выполнен из высокопрочного чугуна, нагрев поверхности тыльной стороны лезвия осуществляют постоянным током с помощью вольфрамового электрода, причем диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, за один оборот электрода вокруг вертикальной оси линейное перемещение составит 3 мм, частота вращения ω выражается зависимостью ω=k⋅30 мин1, где k=1,5 при толщине лезвия 2,0 ≤ δ ≤ 3,0 мм, k=1,0 при толщине лезвия 3,1 ≤ δ ≤ 5,0 мм, k=0,8 при толщине лезвия 5,1 ≤ δ ≤ 7,0 мм.
Изобретение относится к сельскохозяйственному машиностроению, в частности к изготовлению рабочих органов почвообрабатывающих орудий. Для повышения износостойкости и эксплуатационных характеристик лезвий рабочих органов почвообрабатывающих орудий осуществляют нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности при перемещении электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия почвообрабатывающих орудий и вращением вокруг вертикальной оси, при этом почвообрабатывающие орудия выполняют из высокопрочного чугуна ВЧ50, нагрев поверхности тыльной стороны лезвия осуществляют вольфрамовым электродом постоянным током, причем диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, при этом за один оборот электрода вокруг вертикальной оси линейное перемещение составит 5 мм, частота вращения 25 мин-1, при этом толщина лезвия равна не менее 7 мм.

Изобретение относится к области сельскохозяйственного машиностроения и может быть использовано при подготовке к работе лемехов плугов, лапок культиватора и других рабочих органов почвообрабатывающих машин. Для повышения износостойкости рабочих органов почвообрабатывающих машин лезвия рабочих органов намагничивают катушкой постоянного тока намагничивающего аппарата при соотношении силы тока и количества витков таким образом, что произведение I·W=1000 A-витков.

Изобретение относится к способу упрочнения режущих частей культиваторной лапы точечной электромеханической обработкой Способ включает электромеханическую обработку поверхности режущих частей культиваторной лапы путем создания усилия прижима и плотностью тока до 109 А/м2 с образованием зон упрочнения на глубину до 3 мм. Обработку производят вдоль режущей части лапы участками диаметром 6-15 мм, причем центры участков находятся на одной линии на расстоянии 3-7,5 мм от края режущих частей культиваторной лапы и на расстоянии 10-15 мм друг от друга. Техническим результатом изобретения является повышение долговечности культиваторных лап за счет повышения твердости и износостойкости к абразивному изнашиванию режущих лезвий с обеспечением эффектов самозатачивания и формирования пилообразного лезвия в процессе работы изделий. 1 ил.
Наверх