Способ определения прочности материалов

Изобретение относится к исследованию прочностных свойств металлических материалов, в частности к определению усилия, вызывающего разрушение поверхностно упрочненных стальных изделий. Сущность: определяют толщину и площадь упрочненного слоя и устанавливают функциональную зависимость изменения твердости по сечению упрочненного слоя, осуществляют ее интегрирование, где в качестве интегрирующей величины выступает толщина упрочненного слоя, и определяют усилие, вызывающее разрушение поверхностно упрочненных стальных изделий, используя уравнение, учитывающее значения усилия, вызывающего разрушение поверхностно упрочненной детали, площади упрочненного слоя, площади основного металла, толщины упрочненного слоя, функциональной зависимости изменения твердости по сечению упрочненного слоя, коэффициента, для стали равного 0,345, и твердости основы металла детали. Технический результат: возможность объективно судить о прочности изделия, в том числе и после поверхностного упрочнения, и прогнозировать их надежность и долговечность в эксплуатации. 3 ил.

 

Изобретение относится к исследованию прочностных свойств металлических материалов, в частности к определению усилия, вызывающего разрушение поверхностно упрочненных стальных изделий.

Известен способ определения прочности металлических материалов, по которому специально изготовленный образец подвергается испытанию на растяжение, и по диаграмме растяжения определяется наибольшее усилие, вызывающее его разрушение [1].

Способ [1] направлен на определение прочности и пластичности металла, используемого для изготовления изделий различного функционального назначения, но не позволяет спрогнозировать усилие, вызывающее разрушение поверхностно упрочненных стальных изделий.

Известен способ [2] определения прочности металлических материалов базирующийся на использовании уравнения Бринелля, в котором предел прочности (σв) стали устанавливают по твердости металла (НВ) с применением зависимости: σв (МПа) = 9,81⋅К⋅НВ, где коэффициент К = 0,34 при НВ<175 и К = 0,36 при НВ>175. Способ позволяет определить временное сопротивление, а соответственно и усилие, вызывающее разрушение материала [2].

Недостатком данного способа [2] является невозможность определения усилия, вызывающего разрушение стальных изделий, у которых присутствует поверхностный упрочненный слой, сформированный в результате химико-термической обработки или поверхностной закалки с нагрева ТВЧ и другими методами.

Наиболее близким по технической сущности к заявляемому является способ определения механических свойств поверхностно упрочненной стали после испытания на растяжение стандартных образцов, предварительно прошедших химико-термическую обработку, в частности азотирование. По результатам испытания азотированных образцов на растяжение судят о прочностных и пластических свойствах упрочненных изделий [3].

К недостаткам данного способа [3] следует отнести высокую трудоемкость определения прочности поверхностно упрочняемой стали, связанной с необходимостью изготовления стандартных образцов, их упрочнении и испытании на специальном оборудовании. Кроме того, способ не позволяет определить наибольшее усилие, вызывающее разрушение непосредственно самого поверхностно упрочненного изделия.

Технической задачей, на решение которой направлено данное изобретение является определение усилия, вызывающего разрушение поверхностно упрочненных стальных изделий.

Решение поставленной задачи по определению усилия, вызывающего разрушение поверхностно упрочненных стальных изделий, базируется на экспериментальных данных, полученных при металлографических исследованиях упрочненных деталей, а именно, на результатах по глубине упрочненного слоя, твердости сердцевины детали и распределению микротвердости по сечению упрочненного слоя. Обязательным условием, при этом, является применение программного продукта, в частности программы «Excel», для установления функциональной зависимости изменения микротвердости по глубине упрочненного слоя и выполнения математического анализа в виде операции интегрирования данной зависимости.

Конструкционная прочность - это комплекс прочностных свойств, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и обеспечивают долговечность и надежность работы материала в условиях эксплуатации. На конструкционную прочность существенное влияние оказывает состояние материала в поверхностном слое, что вызывает необходимость повышения его свойств. Упрочнение поверхности стальных изделий различными методами эффективно сказывается на показателях эксплуатационных свойств, но все же требует оценки прочности готовой детали. Прогнозирование свойств готовой детали по результатам испытаний стандартных образцов с поверхностно упрочненным слоем является недостаточным условием, так как не учитывается масштабный фактор и условия нагруженности детали в работающем механизме. Благодаря IT технологиям появилась возможность более эффективной реализации результатов экспериментальных исследований, что позволяет выполнять необходимые расчеты и более объективно судить о прочности изделия, в том числе и после поверхностного упрочнения, и прогнозировать их надежность и долговечность в эксплуатации.

О прочности изделия обычно судят по прочности наименьшего его сечения и оценивают по величине твердости с использованием зависимости σв = К⋅НВ, где К - коэффициент, зависящий от марки сплава; НВ - твердость по Бринеллю. Такой подход можно применять только в тех случаях, когда изделие имеет однородную твердость по всему сечению. При наличии упрочненного слоя на поверхности изделия его прочность складывается из двух составляющих - прочности непосредственно упрочненного слоя и прочности основной части детали. В отличие от однородной твердости, наблюдаемой в основе детали, твердость упрочненного слоя, сформированного при химико-термической обработке (ХТО), не одинаковая и изменяется по его сечению (Фиг. 1).

Определение долевого участия основы металла средней части детали в суммарную прочность не вызывает затруднения, а для оценки вклада упрочненного слоя в этот показатель свойств необходим сложный и трудоемкий математический расчет. Согласно этому расчету, прочность упрочненного слоя представляет собой сумму величин прочности вносимых отдельными тонкими слоями (i) с определенной твердостью, а именно:

где - прочность отдельного i - слоя; σв - прочность всего упрочненного слоя.

Чем больше количество i- слоев в пределах упрочненного слоя (Фиг. 1), тем точнее будет определена его прочность.

Для определения усилия (Р), вызывающего разрушение упрочненного слоя дополнительно учитывают его площадь. Расчет ведут по формуле:

где S1 (SN) - площадь 1го (N) слоя; , - прочность 1го слоя определяемая следующим образом , где HB1 - твердость.

Аналогичным способом определяют .

В предлагаемом техническом решении по заявляемому изобретению предусмотрено определение толщины и площади упрочненного слоя и установление функциональной зависимости изменения твердости по сечению упрочненного слоя у = f (х) с последующим ее интегрированием, где в качестве интегрирующей величины выступает толщина упрочненного слоя. Для определения усилия, вызывающего разрушения изделия, используют уравнение:

где

Р - усилие вызывающее разрушение поверхностно упрочненной детали, кг;

S1 - площадь упрочненного слоя, мм2;

S2 - площадь основного металла, мм2;

τ - толщина упрочненного слоя, мм;

у = f (х) - функциональная зависимость изменения твердости по сечению упрочненного слоя, где у - твердость НВ, кг/мм2, а x - расстояние от поверхности, мм;

К- коэффициент, для стали равный 0,345;

НВсердц - твердость основы металла детали, кг/мм.

Пример выполнения заявляемого способа.

Апробирование заявляемого способа проводилось на шаровых пальцах, изготовленных из стали 12ХН3А после их химико-термической обработки. Детали подвергались цементации в газовой атмосфере при 930°С в течение 8 часов с последующей закалкой с 870°С в масло МЗМ-26 и отпуском при 180°С. После ХТО выполнены металлографические исследования для оценки глубины упрочненного слоя и изменения твердости по его сечению (Фиг. 2). Дополнительно оценивали структуру поверхностного слоя и твердость сердцевины детали.

Используя результаты экспериментальных исследований, и пользуясь программным продуктом «Excel», установлена функциональная зависимость изменения твердости по сечению упрочненного слоя детали, которая имеет вид:

где y - твердость (HV-HB), кг/мм2; x - расстояние от поверхности, мм.

По результатам металлографических исследований глубина упрочненного (цементованного) слоя составляла 1,4 мм, а твердость в сердцевине детали - 263 НВ.

Определение усилия (Р), вызывающего разрушение упрочненного шарового пальца проводилось по наиболее нагруженному в эксплуатации сечению - 0 30 мм (Фиг. 3).

Где К - коэффициент, для стали равный 0,345;

S1 - площадь упрочненного слоя, равная

S2 - площадь неупрочненного сечения, равная

τ - толщина (глубина) упрочненного слоя, мм;

НВсердц - твердость основного металла, кг/мм2;

Использованные источники

1. ГОСТ 1497-84 Металлы. Методы испытания на растяжение. М.: ИПК Изд-во стандартов, 1984.

2. Морозов А.С, Ремнева В.В, Тонких Г.П. Организация и проведение обследования технического состояния строительных конструкции зданий и сооружений - Москва, 2001. - 212 с. (с. 109).

3. Патент РФ №2522922 С2, МПК С23С 8/26, С232С 8/80 Способ внутреннего азотирования ферритной коррозионно-стойкой стали. Авт. Никуллин С.А., Рожнов А.Б., Рогачев C.O., Хаткевич В.М., Белов В.А., Нечайкина Т.А., заявка №2012143262/02 от 10.10.2012, опубликовано 20.04.2014, Бюл. №20.

Способ определения прочности материалов поверхностно упрочненных стальных стандартных образцов, заключающийся в определении толщины и площади упрочненного слоя, и установлении функциональной зависимости изменения твердости по сечению упрочненного слоя у=f (х), где у - твердость НВ, кг/мм2; а x - расстояние от поверхности, мм, с последующим ее интегрированием, где в качестве интегрирующей величины выступает толщина упрочненного слоя, и определении усилия, вызывающего разрушения поверхностно упрочненных стальных изделий, используя уравнение:

где

Р - усилие, вызывающее разрушение поверхностно упрочненной детали, кг;

S1 - площадь упрочненного слоя, мм2;

S2 - площадь основного металла, мм2;

τ - толщина упрочненного слоя, мм;

y=f (x) - функциональная зависимость изменения твердости по сечению упрочненного слоя, где у - твердость НВ, кг/мм2, а x - расстояние от поверхности, мм;

К - коэффициент, для стали равный 0,345;

НВсердц - твердость основы металла детали, кг/мм2.



 

Похожие патенты:

Изобретение относится к инструментам для измерения физических свойств почв, в частности для определения твердости переуплотненной почвы с фиксацией данных на бумажной ленте. Устройство содержит верхнюю и нижнюю опорные пластины с закрепленными между ними узлами жесткости, направляющими штангами с подвижной пластиной, планкой для бумаги с пружинным зажимом, наружной трубой с центральным стержнем телескопической штанги, цилиндрической пружиной, кареткой, рукояткой, стопорным узлом, содержащим запорный винт, и пишущим механизмом с поворотным узлом.

Изобретение относится к области определения предела текучести при изгибе без разрушения материала деталей, работающих в условиях нагружения изгибающим моментом. Сущность: осуществляют нагружение поверхности испытуемого материала посредством индентора нагрузкой, величина которой соответствует диапазону измерения твердости, измерение параметров отпечатка и расчет предела текучести испытуемого материала.

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела текучести при смятии без разрушения материала деталей, работающих в условиях нагружения сминающими нагрузками. Сущность: осуществляют нагружение поверхности испытуемого материала посредством сферического индентора нагрузкой, величина которой соответствует диапазону измерения твердости, измеряют параметры отпечатка и рассчитывают предел текучести испытуемого материала.

Изобретение относится к области исследования поверхности материалов, в частности способа определения параметров поверхностных трещин, глубин и углов наклона в металлах и сплавах, и может быть использовано при проведении технической диагностики металлоконструкций различного назначения. Сущность: измеряют твердость по шкале С Роквелла на бездефектном участке HRC0 и на противоположных берегах трещины HRC1 и HRC2.

Изобретение относится к области производства сферических порохов по водно-дисперсионной технологии и предназначено для определения реологических характеристик порохового лака на фазе формирования. Штативный пенетрометр, включающий штатив с лапкой, корпус с измерительной линейкой, цилиндрическую чашу, стержень с упором и индентором, подставку, отличается использованием взаимозаменяемых стержней с упорами и с перфорированными дисками с диаметрами в пределах 25-40 мм с цилиндрическими и коническими отверстиями с диаметром 4 мм, сферами с диаметрами в пределах 12-26 мм и конусами с диаметрами в пределах 7,9-16,6 мм, высотой 20-30 мм и углами при вершинах в пределах 15-45° в зависимости от консистенции порохового лака и глубины погружения стержня с упором и индентором в пороховой лак до 90 мм.

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела прочности при срезе без разрушения материала деталей. Сущность: осуществляют нагружение испытуемого материала посредством сферического индентора нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измерение диаметра индентора, диаметра остаточного отпечатка на поверхности испытуемого материала, нагрузки на индентор и расчет предела прочности материала при срезе по зависимости, учитывающей εр - предельную равномерную деформацию при статическом растяжении образца из испытуемого материала, F – нагрузку на сферический индентор, d – диаметр отпечатка на поверхности испытуемого материала, D – диаметр сферического индентора, V и W - коэффициенты предела прочности при срезе, зависящие от химического состава испытуемого материала.

Изобретения относятся к области исследования прочностных свойств бетонов и могут быть использованы для контроля прочности бетонных конструкций. Определение прочности производят по усилию выдергивания погруженного дюбель-гвоздя из тестируемого бетона.

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности (линейные размеры, шероховатость), механических (твердость, модуль упругости, адгезия покрытия) и трибологических (коэффициент трения, износостойкость, время жизни покрытий) характеристик материалов цилиндрических и плоских поверхностей трения изделий машиностроения.

Изобретение относится к области машиностроения, в частности к устройствам для контроля параметров шероховатости и механических свойств цилиндрических и плоских поверхностей трения изделий машиностроения. Прибор содержит массивное основание с установленными на нем позиционерами с приводами, стойку с держателем изделий, комплект сменных инденторов, а также блок управления, включающий компьютер с программным обеспечением и контроллерами, датчики перемещения детали в трех пространственных координатах X, Y и Z и осевого вращения.

Изобретение относится к области определения пластичных свойств металлов и может быть использовано для определения предельного равномерного сужения без разрушения материала деталей. Сущность: испытуемый материал нагружают посредством сферического индентора нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют глубину отпечатка на поверхности испытуемого материала и рассчитывают предельное равномерное сужение по зависимости, учитывающей нагрузку на сферический индентор, диаметр сферического индентора, глубину отпечатка на поверхности испытуемого материала, число π и универсальную постоянную для металлов.

Группа изобретений относится к медицине, а именно к устройству, системе и способу измерения эластичности кожи. Устройство содержит средство для прикрепления устройства измерения эластичности к устройству записи изображения, механическое средство, зеркало. Механическое средство выполнено так, что кожа деформируется под воздействием заданного давления при прижатии средства к коже. При этом изображение деформированной кожи может быть записано устройством записи изображения, когда оно прикреплено к устройству измерения эластичности. Механическое средство содержит внешнюю и внутреннюю структуры, пружину. Внутренняя структура частично расположена внутри внешней структуры и выполнена с возможностью перемещаться внутри внешней структуры. При этом часть внутренней структуры расположена вне внешней структуры. Пружина предоставляет заданное давление, соединена с внутренней структурой и расположена так, что она сжимается, когда внутренняя структура перемещается внутри внешней структуры. При этом внутренняя структура вызывает деформацию кожи, когда устройство измерения эластичности прижимается к коже и внутренняя структура перемещается внутри внешней структуры. Конец внутренней структуры имеет отверстие, которое позволяет коже выпячиваться в отверстие. Часть внутренней структуры имеет уширения, выполненные с возможностью формирования кожной складки за счет перемещения внутренней структуры устройства во внешней структуре. Зеркало расположено внутри внутренней структуры с возможностью обеспечения вида деформации кожи под углом. Система содержит устройство измерения эластичности кожи, устройство записи изображения, процессор. Устройство записи изображения содержит формирователь изображения для визуализации деформации кожи и источник света для освещения деформации кожи. Процессор сконфигурирован для определения степени деформации кожи на изображении с использованием методов обработки изображения. Процессор также сконфигурирован для определения эластичности кожи на основе определенной степени деформации кожи и заданного значения давления. При исполнении способа принимают изображение деформированной кожи. Принимают значение давления, которому подверглась кожа, чтобы вызвать деформацию кожи. Определяют степень деформации кожи на изображении с использованием методов обработки изображений. Определяют эластичность кожи на основе степени деформации кожи и величины давления. За счет указанных конструктивных особенностей устройства, а именно обеспечения уширений внутренней структуры для создания кожной складки, зеркала для возможности получения вида деформации кожи под углом, обеспечивается возможность измерения эластичности кожи в домашних условиях. 3 н. и 11 з.п. ф-лы, 12 ил.
Наверх