Способ изготовления биаксиально текстурированной подложки в виде ленты из тройного сплава на медно-никелевой основе для эпитаксиального нанесения на нее буферных и высокотемпературного сверхпроводящего слоев

Изобретение относится к металлургии, в частности к способам получения биаксиально текстурированных подложек для эпитаксиального нанесения на нее буферных и высокотемпературного сверхпроводящего слоев для ленточных высокотемпературных сверхпроводников (ВТСП) второго поколения. Способ изготовления биаксиально текстурированной подложки в виде ленты из тройного сплава на медно-никелевой основе для эпитаксиального нанесения на нее буферных и высокотемпературного сверхпроводящего слоев включает выплавку с введением в медно-никелевый сплав легирующего элемента ниобия, или молибдена, или вольфрама с получением слитка тройного сплава на медно-никелевой основе, ковку слитка в заготовку в виде прутка, холодную реверсивную прокатку заготовки до степени деформации ≥97% с получением ленты и рекристаллизационный отжиг полученной ленты при температуре ≥1000°С. При этом выплавляют тройной сплав, ат. %: ниобий ≤2,5, или молибден ≤2,0, или вольфрам ≤2,0, никель - 40-45, медь - остальное. Обеспечивается получение высокой прочности и степени остроты кристаллографической текстуры при сохранении немагнитности при рабочей температуре сверхпроводника 77 К. 1 з.п. ф-лы, 3 ил., 1 табл., 1 пр.

 

Изобретение относится к металлургии, в частности к способам получения биаксиально текстурированных подложек.

Биаксиально текстурированная подложка служит основой для эпитаксиального нанесения на нее буферных и высокотемпературного сверхпроводящего (ВТСП) слоев. Готовая многослойная лента может быть использована для передачи электроэнергии с наименьшими потерями, создания сильных магнитных полей в безгелиевых ВТСП соленоидах, для проектирования экономичных, с улучшенными массогабаритными характеристиками изделий для электроэнергетики и медицинского оборудования. Кроме того, ВТСП-провод, в котором использована биаксиально текстурированная лента-подложка, является единственным материалом, который позволяет создать сверхвысокие магнитные поля, необходимые для осуществления реакции термоядерного синтеза в компактных токамаках.

В 90-х гг. была разработана технология высокотемпературных сверхпроводящих кабелей второго поколения, основанная на эпитаксиальном нанесении керамического высокотемпературного сверхпроводника (ВТСП) через буферные слои на биаксиально текстурированную металлическую подложку [Goyal A., Norton D.P., Budai J.D., Phavantham N., et. al. High Critical Current Density Superconductors Tapes by Epitaxial Deposition of YВа2Сu3Ох Thick Films on Biaxially Texturated Metals // Appl. Phys. Lett. 1996. V.69, №.16. P.1795-1797], что привело к необходимости получения металлических лент-подложек с высокой степенью совершенства кубической текстуры {100}<001>.

Основной характеристикой ленточных многослойных ВТСП является величина критического тока, которая в значительной степени определяется остротой кристаллографической текстуры в материале сверхпроводника, наследуемой от биаксиальной кубической текстуры металлической подложки. Желательно также, чтобы металлическая подложка не была ферромагнитной при рабочей температуре ВТСП, поскольку чем меньше магнитная проницаемость подложки, тем больше критический ток.

Для производства длинных лент в промышленности необходимо иметь достаточно высокие прочностные свойства несущей металлической ленты, которая обеспечивает структурную целостность слоя ВТСП. Кроме того, желательно, чтобы лента-подложка, помимо высокой степени текстурованности, немагнитности и прочности, обладала высокой стойкостью к окислению, особенно при температурах нанесения буферных и сверхпроводящих слоев.

Поэтому создание способа изготовления биаксиально текстурированной подложки из тройного сплава на медно-никелевой основе, обладающего высокими прочностными свойствами несущей металлической ленты и расширяющего тем самым линейку тройных сплавов на медно-никелевой основе, обладающих необходимыми прочностными свойствами и степенью остроты кристаллографической текстуры, при сохранении немагнитности при рабочей температуре высокотемпературного сверхпроводника (77 К), присущим подложкам из тройного сплава на медно-никелевой основе с добавками железа, или хрома, или ванадия является технической проблемой, на решение которой направлено заявляемое техническое решение.

Подложка может быть текстурирована с применением деформационных процессов, таких как холодная прокатка и последующего рекристаллизационного отжига подложки.

Известен способ изготовления биаксиально текстурированной подложки, включающий выплавку, ковку, холодную прокатку и последующий рекристаллизационный отжиг, в котором используются различные чистые металлы: Ni, Сu, Pd, Pt, Ag и некоторые сплавы перечисленных металлов [Патент США №6,180,570].

Перечисленные чистые металлы обладают чрезвычайно низким значением предела текучести в текстурированном состоянии (от 25 до 35 МПа). Кроме того, в описанном способе изготовления подложки не все металлы обеспечивают после соответствующих технологических процедур формирование острой кубической текстуры и необходимого уровня прочности. Например, в серебре при прокатке при комнатной температуре образуется текстура деформации такого компонентного состава, что становится невозможно получить кубическую текстуру рекристаллизации при последующем отжиге [Вассерман Г., Гревен И. Текстуры металлических материалов. М.: Металлургия, 1969. 655 с.]. В чистой меди, а также в чистом никеле, после высоких степеней холодной прокатки образуется текстура такого компонентного состава, что обеспечивается формирование в ленте после первичной рекристаллизации острой кубической текстуры, но низкие прочностные свойства не позволяют производить протяженные ленты.

Таким образом, этот способ изготовления биаксиально текстурированной подложки не обеспечивает достижение высоких прочностных свойств несущей металлической ленты при сохранении немагнитности при рабочей температуре высокотемпературного сверхпроводника, и, следовательно, не решает технической проблемы.

Известен способ производства биаксиально текстурированной подложки, включающий выплавку, ковку, холодную реверсивную прокатку до степени деформации более 97% и рекристаллизационный отжиг при температуре ≥1000°С, в котором используют различные тройные сплавы на основе никеля. [Патент США 5,964,966]. Примерами таких сплавов являются сплавы с 5-10 ат. % W и 2-4 ат. % Аl. Сплав Ni-5%W-2%Аl обладает высокой степенью совершенства кристаллографической текстуры и необходимой прочностью, но никель сильный ферромагнетик и сплав имеет температуру Кюри около 260 К, т.е. при 77 К, рабочей температуре ВТСП, является ферромагнитным. Поскольку на величину критического тока в сверхпроводящем слое влияет магнитное состояние материала подложки (чем меньше магнитная проницаемость подложки, тем больше критический ток), необходимо, чтобы материал подложки был немагнитен при рабочей температуре ВТСП. С целью достижения немагнитного состояния тройного никелевого сплава увеличивают количество вводимых легирующих элементов. Полученные сплавы Ni-5%W-2%Al и Ni-5%W-4%Al немагнитны при 77 К, но в них не удается получить необходимую степень совершенства кубической текстуры из-за снижения энергии дефектов упаковки сплава ниже порогового значения, при котором в сплаве после холодной деформации прокаткой и последующем рекристаллизационном отжиге возможно образование острой кубической текстуры.

Таким образом, этот способ изготовления биаксиально текстурированной подложки не позволяет обеспечить одновременное выполнение двух необходимых условий, а именно совершенную кубическую текстуру при сохранении немагнитности при рабочей температуре высокотемпературного сверхпроводника, и, следовательно, не решает технической проблемы.

Известен также способ изготовления биаксиально текстурированной подложки из медно-никелевого сплава, включающий выплавку, ковку, холодную реверсивную прокатку до степени деформации более 95% и рекристаллизационный отжиг при температуре ≥800°С, в котором в качестве медно-никелевого сплава используют бинарные сплавы с содержанием меди от 30 до 55 ат. %, предпочтительным из которых является немагнитный при температуре 77 К бинарный сплав Ni-55 ат. % Сu [Патент США 5,964,966]. Такой медно-никелевый сплав обладает трехкратным упрочнением (по σ0,2) в сравнении с чистой медью.

Однако, стремление уменьшить толщину металлической подложки с целью уменьшения веса конструкции ВТСП-провода, диктует необходимость дальнейшего увеличения прочности ленты. Увеличение прочности медно-никелевого сплава за счет увеличения содержания в нем никеля невозможно, поскольку содержанием никеля 45-46 ат. % является предельным для сохранения парамагнитного состояния сплава (немагнитного при температуре жидкого азота 77 К). Следовательно, нет возможности достичь необходимого уровня прочности, используя двойные медно-никелевые сплавы, и тем самым решить техническую проблему.

Известен близкий к заявляемому по технической сущности способ изготовления биаксиально текстурированной подложки из тройного сплава на медно-никелевой основе - константана, включающий выплавку, ковку, холодную реверсивную прокатку до степени деформации более 95% и рекристаллизационный отжиг при температуре ≥900°С [Varanasi C.V., Brunke L., J Burke, Maartense I., Padmaja N., Efstathiadis H., Chaney A. and Barnes P.N. Biaxially textured constantan alloy (Cu 55 wt%, Ni 44 wt%, Mn 1 wt%) substrates for YBa2Cu3O7-x coated conductors // Supercond. Sci. Technol. 2006. V. 19. P. 896-901.] Этот сплав по составу близок к промышленному константану Сu-43% Ni-1,5% Mn (американский стандарт С - 72150).

Однако, введение в медно-никелевую основу такого третьего элемента как марганец не дает преимуществ с точки зрения упрочнения сплава. Присутствующий в промышленном константане марганец, является технологической добавкой при раскислении жидкого металла во время выплавки [Мальцев М.В., Барсукова Т.А., Борин Ф.А. Металлография цветных металлов и сплавов. М.: ГНТИ по черной и цветной металлургии, 1960. 372 с. (с.15)]. Следовательно, марганец, присутствующий в данном тройном сплаве на медно-никелевой основе не позволяет достичь необходимого уровня прочности, и тем самым решить техническую проблему.

Наиболее близким к заявляемому по технической сущности является способ изготовления биаксиально текстурированной подложки из тройного сплава на медно-никелевой основе с добавками 3d-переходных металлов 4 периода (железа, хрома или ванадия), включающий выплавку, ковку, холодную реверсивную прокатку до степени деформации более 95% и рекристаллизационный отжиг при температуре ≥1000°С [Патент РФ RU №2624564]. Способ позволяет получить четырехкратное упрочнение ленты-подложки по сравнению с лентами из чистой меди, при сохранении ее немагнитности и высокой остроты кристаллографической текстуры.

Наиболее близкий аналог также не решает технической проблемы, включающей расширение линейки тройных сплавов на медно-никелевой основе, обладающих необходимыми прочностными свойствами и степенью остроты кристаллографической текстуры, при сохранении немагнитности при рабочей температуре высокотемпературного сверхпроводника (77 К), используемых в качестве эпитаксиальных подложек. К тому же, использованные в этом способе 3d-переходные металлы 4 периода являются менее эффективными упрочнителями, в расчете на 1 ат. % легирующего элемента, чем, например, основные тугоплавкие 4d-переходные металлы 5 периода (ниобий, молибден) и 5d-переходные металлы 6 периода (вольфрам).

В основе изобретения лежит техническая проблема расширения линейки тройных сплавов на медно-никелевой основе, обладающих необходимыми прочностными свойствами и степенью остроты кристаллографической текстуры, при сохранении немагнитности при рабочей температуре высокотемпературного сверхпроводника (77 К), присущим подложкам, изготовленным из тройного сплава на медно-никелевой основе с добавками железа, или хрома, или ванадия.

Техническая проблема решается достижением технического результата, заключающегося в расширении арсенала тройных сплавов на медно-никелевой основе, обладающих необходимыми прочностными свойствами и степенью остроты кристаллографической текстуры, при сохранении немагнитности при рабочей температуре высокотемпературного сверхпроводника (77 К), присущим лентам-подложкам из тройного сплава на медно-никелевой основе с добавками железа, или хрома, или ванадия.

Для создания тройных сплавов на медной основе, в которых можно получить острую кубическую текстуру целесообразно использовать сплавы с содержанием никеля не более 45 ат. %, поскольку они парамагнитны при рабочей температуре ВТСП (77 К).

Легирование медно-никелевого твердого раствора некоторыми 4е-переходными металлами 5 периода, такими как ниобий и молибден, а также 5d-переходными металлами 6 периода, такими как вольфрам, позволит получить прочностные свойства прокатанной ленты не хуже, даже при меньшем количестве вводимой добавки, (поскольку упрочняющая способность этих металлов в расчете на 1 ат. % легирующего элемента выше, чем у железа, хрома и ванадия), содержащихся в известных тройных сплавах на медно-никелевой основе.

Технический результат достигается тем, что в способе изготовления биаксиально текстурированной подложки из тройного сплава на медно-никелевой основе, включающем выплавку, ковку, холодную реверсивную прокатку ленты до степени деформации ≥97% и рекристаллизационный отжиг ее при температуре ≥1000°С, согласно изобретению в качестве тройного сплава на медно-никелевой основе используют сплав с добавками тугоплавких 4d-переходных металлов 5 периода или 5d-переходных металлов 6 периода следующего химического состава, ат. %:

Ниобий ≤2.5 ат. %, или молибден ≤2.0 ат. %, или вольфрам ≤2.0 ат. %,

Никель - 40-45 ат. %,

Медь - остальное;

При этом температура рекристаллизационного отжига составляет 1000-1050°С.

Легирование медно-никелевого сплава любым из перечисленных элементов: Nb, Mo или W не приводит к изменению типа текстуры деформации в сторону снижения склонности к образованию кубической текстуры рекристаллизации при отжиге сплава.

Известно, что при легировании меди никелем происходит не уменьшение энергии дефектов упаковки (ЭДУ), как при легировании меди другими металлами, а даже незначительное увеличению ЭДУ [Gallagher P.C.J. The Influence of Alloying, Temperature, and Related Effects on the Stacking Fault Energy // Met. Trans. 1970. V.1. P. 2429-2460.], что, в свою очередь, приводит к изменению типа текстуры деформации в сторону усиления склонности к образованию кубической текстуры рекристаллизации при отжиге двойного медно-никелевого сплава. Комплексное легирование меди никелем и 3d-переходным металлом 4 периода при создании тройного сплава на медно-никелевой основе в известных тройных сплавах на медно-никелевой основе [Патент РФ RU №2624564] также не приводит к изменению типа текстуры деформации в сторону снижения склонности к образованию кубической текстуры рекристаллизации при отжиге сплава.

Для всех тройных сплавов на медно-никелевой основе с добавками 4d-переходных металлов 5 периода (ниобий, молибден) и 5d-переходных металлов 6 периода (вольфрам) сумма основных деформационных компонент С и S больше удвоенного количества компоненты В и после рекристаллизационного отжига при температуре ≥1000°С в прокатанных лентах из этих сплавов формируется острая кубическая текстура с объемной долей зерен, имеющих ориентацию {001}<100>±10° более 97% (фиг. 1).

Нами установлена оптимальная температура рекристаллизационного отжига - 1050°С, позволяющая получить в ленте исследованных тройных сплавов высокотекстурированное состояние, приближающееся к монокристаллическому. Показано, что при увеличении температуры рекристаллизационного отжига с 1000°С до 1050°С доля зерен с двойниковой ориентацией снижается до уровня менее 1%, также структура становится также более однородной по размеру зерна (фиг. 2). Зерна двойниковой ориентации, присутствующие в небольшом количестве после отжига при 1000°С, имеют характерные «прямые» границы (на фиг. 2а показаны стрелками). После отжига при 1050°С двойников в структуре исследованных сплавов нет (фиг. 2б). Показателем повышения качества кубической текстуры с увеличением температуры рекристаллизационного отжига является и существенное увеличение уровня интенсивности текстурного максимума (на ~30%), а также заметно меньшая площадь области на полюсной фигуре, очерченная контуром наибольшей интенсивности (фиг. 3).

Степень совершенства кубической текстуры рекристаллизации исследованных нами тройных сплавов Cu-Ni-W, Cu-Ni-Mo, Cu-Ni-Nb представлена на фиг. 1, и в табл. 1.

Повышение степени текстурного и структурного совершенства исследованных нами тройных сплавов Cu-Ni-W, Cu-Ni-Mo, Cu-Ni-Nb представлено на фиг. 2 и фиг. 3.

Нами проведен анализ механических свойств текстурированных лент из предлагаемых тройных сплавов, а также для сравнения лент из чистой меди и известных тройных сплавов с железом, хромом и ванадием. Легирование медно-никелевой основы 4d-переходными металлами 5 периода (ниобий или молибден) или 5d-переходными металлами 6 периода (вольфрам) позволяет получить равноценное или выше упрочнение ленты, при сохранении немагнитности и склонности известных тройных сплавов на медно-никелевой основе к образованию совершенной кубической текстуры рекристаллизации. Замена в сплаве третьего элемента хрома, железа или ванадия на тугоплавкие элементы ниобий, молибден или вольфрам, приводящая к четырехкратному упрочнению ленты-подложки из чистой меди (табл.1), позволяет уменьшить толщину ленты-подложки, что в свою очередь приводит к существенной экономии металла при производстве протяженного кабеля.

Нами установлены пороговые значения содержания легирующего элемента (Nb, Mo или W) в тройных сплавах на медно-никелевой основе, в вес. %: 0.5≤Nb≤2.5; 0.5≤Мо≤2.0; 0.5≤W≤1.1. При содержании в тройном сплаве на медно-никелевой основе Cu-Ni-Me (Me=Cr, Fe, V) менее 0.5 ат. % легирующей добавки не будет достигаться необходимый уровень прочности ленты-подложки. С другой стороны, количество более 2.5 ат. % ниобия или более 2.0 ат. % молибдена или вольфрама в тройном сплаве на медно-никелевой основе превышает его предельную, растворимость в ГЦК медно-никелевой матрице, что может привести к нежелательному появлению частиц второй фазы и снижению степени остроты биаксиальной кубической текстуры.

В таблице 1 приведен химический состав, механические свойства и параметры кубической текстуры исследованных тройных сплавов на медно-никелевой основе в сравнении с медью и тройными сплавами с железом, хромом и ванадием.

На фиг. 1. показаны EBSD-ориентационная микрокарта (а), компонентный состав текстуры рекристаллизации (б) и гистограммы разориентировки границ зерен (в) для сплава Сu-40% Ni-0.8%Mo после отжига при 1050°С. Объемная доля кубических зерен с рассеянием ±10° составляет более 97%.

На фиг. 2. показана структура поверхности текстурованных лент из сплава п Сu-40% Ni - 0.8%Мо после отжига при 1000 (а) и 1050°С (б).

На фиг. 3 показаны полюсные фигуры {111} для текстурованной ленты из сплава Cu-40% Ni-0.8% W после часового рекристаллизационного отжига при 1000 (а) и 1050°С (б).

Способ осуществляют следующим образом:

Тройные сплавы на медно-никелевой основе выплавляют в алундовых тиглях в атмосфере аргона в вакуумной индукционной печи. Используют бескислородную медь чистотой 99.95 вес. %, никель чистотой 99.99 вес. %, а также ниобий, молибден и вольфрам чистотой не ниже 99.94 вес. %. Слитки подвергают ковке при температуре в интервале 1100-900°С на прутки сечением 10×10 мм. После шлифовки получают заготовки 10×10×150 мм, которые отжигают при 650°С, 1.5 часа. Средняя величина зерна в заготовках не должна превышать 40 мкм. Холодную прокатку заготовок осуществляют в два этапа: 1 этап на прокатном стане с диаметром валков 180 мм (деформация ~90%, число проходов 35-40); 2 этап - на двухвалковом прокатном стане с полированными валками диаметром 55 мм до ленты толщиной 80-100 мкм, степень холодной деформации составляет 98-99%. Прокатка реверсивная. Рекристаллизационный отжиг для получения биаксиальной текстуры проводят в течение 1 часа в вакуумной печи (3⋅10-5 мм. рт.ст.) при температурах 950, 1000, 1050 или 1100°С. Нагрев ленточных образцов, помещенных в вакуумный контейнер, осуществляют посадкой в печь, нагретую до требуемой температуры, охлаждение образцов после отжига - вне печного пространства. После рекристаллизационного отжига при температуре ≥1000°С в прокатанных лентах из всех сплавов формируется острая кубическая текстура с объемной долей зерен, имеющих ориентацию {001}<100>±10° более 97%. Пример 1.

Сплав Ni - 40 ат. %, Мо - 0.8 ат. %, Сu - остальное, выплавлен в атмосфере аргона в вакуумной индукционной печи. Используется бескислородная медь чистотой 99.95 вес. %, никель чистотой 99.99 вес. % и молибден чистотой не ниже 99.94 вес. %. Слиток весом 500 г, прокован при 1100-900°С на пруток сечением 10,5×10,5 мм. Полученный пруток подвергался шлифовке до размера 10×10×150 мм. Далее проводили отжиг полученной заготовки при температуре 650°С в течение 1.5 ч для создания однородной мелкозернистой структуры. Исходный размер зерна перед холодной прокаткой составлял 40 мкм. Реверсную прокатку осуществляли при комнатной температуре. Степень деформации составляла 99%, конечная толщина ленты ~90 мкм. Сумма объемных долей компонент текстуры деформации составляла: S+C=41.8%, 2 В=25,1%. Сумма объемных долей компонент S и С намного превышает удвоенную объемную долю компоненты В, что говорит о возможности реализации в ленте острой кубической текстуры после рекристаллизационного отжига. В результате рекристаллизационного отжига в вакууме при температуре 1050°С в течение 1 ч в сплаве сформировалась острая кубическая текстура с содержанием зерен ориентации {001}<100>±100° ≥ 97% (см. фиг. 1).

Сплав Ni - 40 ат. %, Мо - 0.8 ат. %, Сu - остальное, обладает высокой термической устойчивостью к развитию вторичной рекристаллизации. Предел текучести готовой ленты составляет 108 МПа, (см. табл. 1), что почти в 4 раза превышает предел текучести ленты из чистой меди и даже немного выше величины предела текучести тройных сплавов на медно-никелевой основе с 3d-переходными металлами 4 периода: железа, или хрома, или ванадия (см. табл.1). Сплав является немагнитным при рабочих температурах высокотемпературного сверхпроводника.

Таким образом, достигнут технический результат, заключающегося в расширении арсенала тройных сплавов на медно-никелевой основе, обладающих необходимыми прочностными свойствами, степенью остроты кристаллографической текстуры, при сохранении немагнитности при рабочей температуре высокотемпературного сверхпроводника (77 К), посредством которого решается поставленная техническая проблема.

1. Способ изготовления биаксиально текстурированной подложки в виде ленты из тройного сплава на медно-никелевой основе для эпитаксиального нанесения на нее буферных и высокотемпературного сверхпроводящего слоев, включающий выплавку с введением в медно-никелевый сплав легирующего элемента с получением слитка тройного сплава на медно-никелевой основе, ковку слитка в заготовку в виде прутка, холодную реверсивную прокатку заготовки до степени деформации ≥97% с получением ленты и рекристаллизационный отжиг полученной ленты при температуре ≥1000°С, отличающийся тем, что при выплавке тройного сплава на медно-никелевой основе в качестве легирующего элемента вводят ниобий, или молибден, или вольфрам и выплавляют тройной сплав, ат. %:

ниобий ≤2,5, или молибден ≤2,0, или вольфрам ≤2,0,

никель - 40-45,

медь - остальное.

2. Способ по п. 1, отличающийся тем, что температура рекристаллизационного отжига составляет 1000-1050°С.



 

Похожие патенты:

Изобретение относится к сверхпроводящим оксидным проводам и способу их получения. Сверхпроводящий оксидный провод содержит сверхпроводящий слой, нанесенный на подложку, причем сверхпроводящий слой содержит оксидный сверхпроводник на основе RE-Ba-Cu-O и искусственные центры пиннинга, содержащие АВО3, где RE - редкоземельный элемент, А - Ba, Sr или Са, В - Hf, Zr или Sn, при этом на ПЭМ изображении сверхпроводящего слоя в поперечном сечении среднеквадратическое отклонение σ угла отклонения стержней искусственных центров пиннинга от направления толщины сверхпроводящего слоя составляет от 6,13 до 11,73°, а средняя длина стержней искусственных центров пиннинга составляет от 19,84 до 25,44 нм.

Изобретение относится к технологии получения высокотемпературных сверхпроводящих лент малой ширины (типично от 1 до 11 мм) второго поколения на основе смешанных оксидов редкоземельных элементов, бария и меди, которые могут быть использованы в устройствах, требующих постоянного контроля качества проводов, в частности в токоограничителях, генераторах, моторах, трансформаторах, магнитах т.д.

Изобретение относится к области электротехники, в частности к способу изготовления электрического контактного соединения высокотемпературных сверхпроводников (ВТСП) с клеммами, и может быть использовано для производства сверхпроводящих токопроводов, сверхпроводникового энергетического оборудования и т.п.

Сверхпроводящий провод содержит сверхпроводящий ламинат, в котором сверхпроводящий слой сформирован на материале основы, имеющей вид ленты, через промежуточный слой, и стабилизационный слой, покрывающий по меньшей мере часть сверхпроводящего ламината, при этом остаточное напряжение в стабилизационном слое является напряжением растяжения.

Изобретение относится к технологии производства высокотемпературных сверхпроводящих лент (далее - ВТСП лент) второго поколения, а именно к диагностике качества ВТСП лент и поиску дефектных транспортирующих и измерительных роликов в процессе их производства путем анализа измеряемых характеристик. Способ диагностики транспортирующих и измерительных роликов, используемых в процессе производства ВТСП ленты, получаемой в несколько технологических стадий с ее перемещением в процессе получения при помощи транспортирующих роликов и контролем параметров процесса измерительными роликами, предусматривает проведение каждой стадии с использованием группы транспортирующих роликов одного и того же диаметра D и группы измерительных роликов одного и того же диаметра d, причем диаметр транспортирующих роликов, по меньшей мере, одной группы отличается от диаметров транспортирующих роликов остальных групп.

Изобретение относится к проводникам электрического тока, имеющим предельные физические свойства и характеристики, включая высокую и сверхвысокую прочность и долговечность, низкие и сверхнизкие значения электрического сопротивления в широком интервале рабочих температур. Техническим результатом является повышение проводимости проводника.

Изобретение относится к материаловедению и может быть использовано для создания изделий с заданными свойствами, в частности, для изготовления материалов и устройств с низкими, высокими или сверхвысокими физическими свойствами и характеристиками. Технический результат заключается в повышении стойкости материала к таким факторам как температура и нагрузка, воздействующих в реальных условиях как раздельно, так и комбинированно.

Изобретение относится к способам получения электрических контактных соединений ВТСП проводников второго поколения с другими электрическими контактными элементами, в том числе и со сверхпроводниками, и может быть использовано для получения электрических устройств, обеспечивающих такие соединения, например, для изготовления токоограничивающих устройств, двигателей на основе сверхпроводников, трансмиссий и пр.

Настоящее изобретение относится к продуктам, которые могут эксплуатироваться в криогенных средах в сверхпроводящих устройствах. Описано применение полилактидов для изготовления продуктов для сверхпроводящих устройств, эксплуатируемых в криогенных средах и обладающих высокой электрической прочностью.

Изобретение относится к устройствам, специально предназначенным для изготовления сверхпроводников или обработки приборов с использованием сверхпроводимости. Устройство для перемотки ленточного сверхпроводника содержит корпус, внутри которого установлена труба для намотки ленты, катушку для подачи ленты и катушку для сматывания ленты, две опоры, которые выполнены в форме цилиндрических втулок, сопряженных с внутренней стенкой корпуса через подшипники качения.

Изобретение относится к способу термодеформационной обработки заготовки из бронзы БрНХК 2,5-0,7-0,6. Способ включает нагрев до температуры 150-170οС, выдержку в течение 10 мин и аэротермоакустическую обработку путем охлаждения заготовки в резонаторе газоструйного генератора звука при одновременном воздействии потока газа и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дБ в течение 10-12 мин с последующим старением при температуре 440οС, с выдержкой 2,5 часа, с охлаждением на воздухе.
Наверх