Способ комбинированного бороалитирования углеродистой стали

Изобретение относится к металлургии, в частности к химико-термической обработке, и может быть использовано в машиностроении для поверхностного упрочнения деталей, изготовленных из углеродистых сталей. Способ комбинированного бороалитирования углеродистой стали включает твердофазное бороалитирование стали в контейнере с плавким затвором при температуре 950°С в течение 4 часов с насыщающей смесью, содержащей, мас.%: (70% Al2O3 + 10% В2О3 + 20% Al) - 98% + NaF - 2%. Затем дополнительно проводят нагрев поверхности электронным пучком в вакууме 2×10-3 Па в течение 15-25 с, током пучка 58-60 мА и удельной мощностью 25-30 Вт/см2. Обеспечивается увеличение глубины и равномерности, а также улучшение свойств бороалитированных слоев на углеродистой стали. 2 ил., 1 табл., 3 пр.

 

Предлагаемое изобретение относится к металлургии, в частности к химико-термической обработке, и может быть использовано в машиностроении для поверхностного упрочнения деталей, изготовленных из углеродистой стали.

Известен способ комбинированного борирования углеродистой стали, включающий борирование при температуре 940°С в течение 3 ч в контейнере с плавким затвором с насыщающей смесью, состоящей из 100% В4С. После борирования проводят обработку поверхности электронным пучком в вакууме (Р=2×10-3 Па) в течение 15-50 с при удельной мощности 2,9×104 Вт/см2 (см. патент RU №2210617, МПК С23С 8/70, 8/80, опубл. 20.08.2003, Бюл. №23).

Недостатком известного способа является насыщение поверхности стали только одним элементом, что повышает свойства диффузионного слоя в ограниченном диапазоне.

Известен способ термоциклического бороалитирования, предусматривающий подготовку компонентов насыщающей смеси: оксида алюминия, борного ангидрида, алюминия, фтористого натрия, смешивание их и бороалитирование стальных образцов в контейнере с плавким затвором. Бороалитирование проводят следующим образом: стальные образцы упаковывают в контейнер с плавким затвором (50% SiO2 + 50% B2O3), заполненный порошкообразной смесью следующего состава: 98%[(70% Al2O3 + 10% B2O3 + 20% Al)] + 2% NaF. Затем контейнер устанавливают в печь и нагревают до температуры 950°С, выдерживают при этой температуре в течение 50-53 мин (термоциклирование по режиму №1) или 13-16 мин (термоциклирование по режиму №2) и охлаждают на воздухе до температуры 640-650°С. Затем циклы повторяют снова: по режиму №1 нагревают с выдержкой в 30 мин при температуре 950°С; по режиму №2 нагревают до температуры 950°С и охлаждают (без выдержки при температуре нагрева) (см. патент RU №2401319, МПК С23С 8/72, опубл. 10.10.2010, Бюл. №28).

Недостатком известного способа является трудоемкость подготовки процесса бороалитирования и ограничение размеров обрабатываемых изделий размерами контейнера.

Наиболее близким по технической сущности к заявленному изобретению является способ изотермического бороалитирования, предусматривающий насыщение сталей в порошковой смеси, содержащей, масс. %: 98% [30% Al2O3 + 70% (55% Al + 45% B2O3)] + 2% NaF. Бороалитирование осуществляют в специальных контейнерах с плавким затвором. Изотермический процесс проводят при температуре 900-1000°С и временем выдержки 2-4 часа. В результате на поверхности сталей формируются слои, содержащие алюминидные и боридные фазы (Fe2Al5, FeAl, Fe3Al, Fe2B, α-твердый раствор В и Al в Fe), которые в диффузионном слое располагаются послойно (см. Бельский Е.И Упрочнение литых и деформируемых инструментальных сталей. - Минск, 1986. - 155 с.).

Известно, что алюминиды железа с высоким содержанием алюминия обладают высокой жаростойкостью, но характеризуются низкими механическими свойствами, а именно низкой пластичностью и износостойкостью. В условиях сухого трения борирующая составляющая слоя, располагающаяся на границе слой-основа, может обеспечить высокое сопротивление механическому износу только по мере истирания алитированной зоны.

Недостатком известного способа является формирование слоистой структуры, которая не позволяет в полной мере проявить положительные свойства бороалитированного слоя в комплексе. Таким образом, данный тип бороалитированного слоя не оправдывает назначения многокомпонентных покрытий по повышению комплекса поверхностных свойств.

Задачей, на решение которой направлено изобретение, является разработка способа комбинированного бороалитирования углеродистой стали для улучшения свойств диффузионных бороалитированных слоев, а именно устранение слоистости, которое приводит к неравномерному распределению микротвердости по глубине слоя.

Технический результат заявленного изобретения - увеличение глубины, равномерности и улучшение свойств бороалитированных слоев на углеродистой стали.

Указанный технический результат изобретения достигается тем, что в способе комбинированного бороалитирования углеродистой стали, включающем твердофазное бороалитирование при температуре 950°С в течение 4 часов в контейнере с плавким затвором с насыщающей смесью, содержащей, масс. %: 98% (70% Al2O3+10% В2О3 + 20% Al) + 2% NaF, согласно изобретению после бороалитирования дополнительно проводят нагрев поверхности электронным пучком в вакууме 2×10-3 Па в течение 15-25 с, током пучка 58-60 мА и удельной мощностью 25-30 Вт/см2.

Отличительными признаками заявляемого способа являются новые условия проведения процесса бороалитирования, а именно осуществление дополнительного электронно-лучевого нагрева бороалитированных слоев, полученных в порошковых смесях. Электронно-лучевой нагрев позволяет сформировать новые слои, отличающихся структурой и свойствами и увеличить их глубину (см. фиг. 1).

В таблице приведены результаты измерения глубины слоя, величины предельной пластической деформации, напряжения скола и хрупкости бороалитированных слоев в зависимости от способа нагрева и используемых параметров электронно-лучевого нагрева.

Параметры, используемые для обработки бороалитированных образцов и результаты измерений

Как видно из таблицы, нагрев бороалитированных слоев с силой тока электронного луча 58-60 А позволяет увеличить глубину бороалитированных слоев. При твердофазном бороалитировании глубина слоя составляет 160 мкм, после электронно-лучевого нагрева с временем воздействия 15 с - 290 мкм, 20 с - 900 мкм, 25 с - 1270 мкм. Кроме того, на образцах, подвергнутых электроннолучевому нагреву не возникали сколы слоя. Отпечатки имели ровную ромбическую форму без явных признаков искажения, образования трещин в вершинах отпечатка и изменения микроструктуры слоя вокруг отпечатка (см. фиг. 2).

Хрупкость бороалитированных слоев определяли по величине предельной пластической деформации εпред и напряжение скола σск. согласно (В.А. Скуднов, И.Н. Григорьев, С.В. Евдокимов, Л.А. Гаврилов по изобретению - Способ оценки пластичности упрочненного металла, патент России №2085902 и П.К. Григоров, Б.Б. Катанов, Методика исследования хрупкости борированного слоя. Труды НИИТМ. - 1972. - Вып. XVI. - С. 97-99.).

Из анализа полученных результатов установлено:

1. Комбинированная обработка позволяет сформировать новые структуры и свойства бороалитированных слоев по сравнению с твердофазным бороалитированием.

2. Электронно-лучевой нагрев бороалитированных слоев с силой тока электронного луча 58-60 mA позволяет существенно увеличить глубину бороалитированного слоя. При времени воздействия 15 с - 290 мкм, 20 с - 900 мкм, 25 с - 1270 мкм. Это позволило увеличить глубину бороалитированного слоя в 1,8, 5,6 и 7,9 раза соответственно.

3. Применение электронно-лучевого нагрева позволяет снизить хрупкость бороалитированных слоев.

Регулируя параметры электронно-лучевого нагрева можно получать слои с заданными механическими свойствами. Так, например, электронно-лучевая обработка с током пучка 20 mA и временем воздействия 50 с не приводит к изменениям в структуре бороалитированного слоя. Увеличение силы тока до 60 mA и времени воздействия 15-25 с, позволяет получить слои с равномерным распределением алюминия и микротвердости по глубине слоя и получить слои с глубиной до 1270 мкм. Дальнейшее увеличение силы тока свыше 60 mA приводит к сильному оплавлению поверхности металла. При этом содержание А1 в слое снижается до 1,5-3%, а качество поверхности ухудшается.

Удельная мощность менее 25 Вт/см2 является недостаточной для быстрого нагрева поверхности материала, а более 30 Вт/см2 приводит к испарению вещества.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил установить совокупность существенных отличительных признаков, изложенных в формуле изобретения по отношению к усматриваемому заявителем техническому результату - снижение хрупкости, увеличение глубины и улучшение свойств бороалитированных слоев на углеродистой стали.

Заявляемый способ поясняется рисунками, где на фиг. 1 изображены микроструктуры бороалитированных слоев: а) твердофазное бороалитирование, б-г) твердофазное бороалитирование с последующим электронно-лучевым нагревом (а-15 с, ,-20 с, в-25 с); на фиг. 2 - микроструктуры бороалитированных слоев с отпечатками индентора, увеличение 500×: а) твердофазное бороалитирование, б) комбинированный способ.

Предлагаемый способ комбинированного бороалитирования углеродистой стали осуществляют следующим образом. На стальных образцах углеродистой стали проводят твердофазное бороалитирование составом при температуре 950°С в течение 4 часов в контейнере с плавким затвором с насыщающей смесью, содержащей, масс. %: 98% (70% А12О3 + 10% В2О3 + 20% Al)+ 2% NaF. После извлечения образцов из тигля дополнительно проводят нагрев поверхности электронным пучком в вакууме 2×10-3 Па в течение 15-25 с, током пучка 58-60 мА и удельной мощностью 25-30 Вт/см3.

В результате воздействия электронного пучка происходят диффузионные процессы в поверхностном слое металла. Проникая в поверхностные слои электроны, наряду с разогревом, вызывают образование пар Френкеля -междоузельных атомов и вакансий. Вследствие этого происходит радиационно-стимулированная диффузия элементов вглубь диффузионного слоя.

Формирование структуры происходит по диффузионно-кристаллизационному механизму и определяется количеством жидкой фазы. При относительно малом количестве жидкой фазы в слое (не более 25%), диффузионный слой состоит из отдельных дисперсных частиц, распределенных в мягком твердом растворе (псевдоэвтектический слой). При более высоком содержании жидкой фазы диффузионный слой имеет эвтектическую структуру.

Обработка образцов при таком механизме позволяет осуществлять контролируемые изменения состава и структуры, ранее полученных покрытий и диффузионных слоев, и решать определенные задачи. К таким задачам, в частности относится и задача по формированию на поверхности сталей (углеродистых и легированных) покрытий с композиционной структурой, в которой твердые и пластичные фазы должны располагаться определенным образом.

Примеры конкретного выполнения, подтверждающие осуществление способа комбинированного бороалитирования углеродистой стали.

Пример 1. Образец из углеродистой стали 60 подвергают твердофазному бороалитированию при температуре 950°С в течение 4 часов в контейнере с плавким затвором с насыщающей смесью, содержащей, масс. %: 98% (70% Al2O3 + 10% В2О3 + 20% Al) + 2% NaF, затем проводят электронно-лучевой нагрев в вакууме 2×10-3 Па в течение 15 с, током пучка 58 мА и удельной мощностью 25 Вт/см2. После такой обработки глубина слоя составляет 290 мкм.

Пример 2. Образец из углеродистой стали 60 подвергают твердофазному бороалитированию по примеру 1, затем проводят электронно-лучевой нагрев в вакууме 2×10-3 Па в течение 20 с, током пучка 60 мА и удельной мощностью 28 Вт/см2. После обработки по примеру 2 глубина слоя увеличивается до 900 мкм.

Пример 3. Образец из углеродистой стали 60 подвергают твердофазному бороалитированию по примеру 1, затем проводят электронно-лучевой нагрев в вакууме 2×10-3 Па в течение 25 с, током пучка 59 мА и удельной мощностью 30 Вт/см2.

После обработки по примеру 3 глубина слоя составляет 1270 мкм.

Предлагаемый способ комбинированного бороалитирования изделий из углеродистых сталей по сравнению с прототипом (см. Борисенок Г.В., Васильев Л.А., Ворошнин Л.Г. и др. Химико-термическая обработка металлов и сплавов. Справочник. М.: Металлургия, 1981. - 424 с.) обеспечивает следующие преимущества:

- увеличение глубины бороалитированного слоя глубиной от 290 до 1270 мкм;

- снижение хрупкости бороалитированного слоя.

Способ комбинированного бороалитирования углеродистой стали, включающий твердофазное бороалитирование стали при температуре 950°С в течение 4 часов в контейнере с плавким затвором с насыщающей смесью, содержащей, мас.%: (70% Al2O3 + 10% В2О3 + 20% Al) - 98% и NaF – 2%, отличающийся тем, что после бороалитирования дополнительно проводят нагрев поверхности электронным пучком в вакууме 2×10-3 Па в течение 15-25 с, током пучка 58-60 мА и удельной мощностью 25-30 Вт/см2.



 

Похожие патенты:

Изобретение относится к поверхностной обработке и может быть использовано для измельчающих сред в виде помольных шаров или в других объектах из черных металлов. Способ упрочнения поверхности объекта из сплава железа содержит по меньшей мере частичное превращение в газ содержащего углерод полимера для формирования источника упрочняющего материала и подвергание объекта воздействию источника упрочняющего материала, так что источник упрочняющего материала и поверхность объекта реагируют, упрочняя тем самым поверхность объекта.

Изобретение относится к области металлургии, а именно к химико-термической обработке, и может быть использовано при изготовлении деталей из конструкционных сталей, работающих в условии коррозии. Способ химико-термической обработки изделий из конструкционных сталей включает нагрев в печи размещенных в реакторе изделий в азотосодержащей атмосфере, изотермическую выдержку в потоке азотосодержащего газа и последующее охлаждение с печью.

Изобретение относится к металлургии, в частности к химико-термической обработке, и может быть использовано в машиностроении для поверхностного упрочнения деталей, изготовленных из углеродистых сталей. Способ термоциклического бороалитирования стальных изделий включает бороалитирование стального изделия в активной обмазке, содержащей карбид бора, алюминий, фторид натрия.

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к механическому и коррозионно-механическому износам.

Изобретение относится к металлургии, в частности к химико-термической обработке, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и инструмента, изготовленных из углеродистых и легированных сталей. Состав обмазки для борованадирования стальных изделий содержит следующие компоненты, мас.%: карбид бора - 55-60, окись ванадия - 30-35, графит - 5-10 и фтористый натрий 3-5.

Изобретение относится к упрочнению и восстановлению стальных и чугунных деталей с помощью химико-термической обработки. На поверхность детали наносят обмазку, содержащую, мас.%: диборид титана - 20-25, карбид бора - 40-60, фторид натрия - 3-7, хлорид аммония - 5-7, буру - 3-8, бориды железа - 8-20, которую предварительно разводят в воде до пастообразного состояния.

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, включает проведение фотонной обработки упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10-2 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·см-2 для активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана.

Изобретение относится к химико-термической обработке стальных деталей и может быть использовано для обработки деталей, работающих в условиях абразивного износа ударных нагрузок, например для культиваторов, дисков, борон и лемехов. Способ нанесения металлокерамического покрытия на стальную деталь с использованием электрической дуги косвенного действия включает нанесение на упрочняемую поверхность детали металлокерамической пасты, нагрев до плавления металлокерамической пасты и поверхностного слоя детали электрической дугой косвенного действия, возникающей между графитовыми электродами.

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. .
Изобретение относится к упрочнению деталей машин и инструмента из железоуглеродистых сплавов и может быть использовано при производстве деталей машин и инструмента в машиностроительной, металлургической, химической, строительной и других отраслях промышленности, обладающих в 2-10 раз большим ресурсом работы.
Наверх