Способ определения кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа

Использование: для определения кислотного числа жидкого лецитина. Сущность изобретения заключается в том, что осуществляют отбор пробы лецитина, последовательное смешивание пробы лецитина с четыреххлористым углеродом и водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 с получением смеси, помещение полученной смеси в датчик импульсного ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа по уравнению, при этом смешивание пробы лецитина с четыреххлористым углеродом осуществляют при соотношении по массе лецитин/четыреххлористый углерод, равном (1:6)÷(1:6,5), а смешивание водного раствора гидроксида натрия осуществляют в течение 30-40 секунд при соотношении по массе лецитин/водный раствор гидроксида натрия, равном (1:1,2)÷(1:1,3), при этом для вычисления значения кислотного числа используют уравнение: К.ч.=3,6567+0,8233⋅Ам. Технический результат: обеспечение возможности повышения точности результатов анализа. 1 ил., 1 табл.

 

Изобретение относится к области практического применения метода ядерного магнитного резонанса (ЯМР) для определения кислотного числа (К.ч.) жидкого лецитина, полученного из подсолнечного масла олеинового типа, и может быть использовано в масложировой промышленности.

Известен способ определения кислотного числа лецитина, включающий отбор пробы лецитина, смешивание пробы лецитина с растворителем, представляющим смесь хлороформа и этилового спирта, добавление в полученную смесь фенолфталеина, последующее титрование смеси раствором гидроксида калия до получения слабо-розового окрашивания и вычисление значения К.ч. по формуле (ГОСТ 32052-2013. Добавки пищевые. Лецитины Е322. Общие технические условия).

Недостатками этого способа являются низкие точность и воспроизводимость результатов анализа, высокая продолжительность осуществления анализа и необходимость применения этилового спирта.

Известен способ определения кислотного числа жидкого соевого лецитина, включающий отбор пробы лецитина, последовательное смешивание пробы с четыреххлористым углеродом при соотношении по массе «лецитин - четыреххлористый углерод», равном (1:4)÷(1:4,5), и с водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 при соотношении «лецитин - водный раствор гидроксида натрия», равном (1:3)÷(1:3,5), помещение полученной смеси в датчик ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа жидкого соевого лецитина по уравнению: К.ч.=7,1283+0,7008⋅Ам (патент RU 2734792, опубл. 23.10.2020, Бюл. №30).

Недостатком указанного способа является отсутствие возможности его применения для определения кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа, что обусловлено особенностями его химического состава по сравнению с жидким соевым лецитином, что, в свою очередь, значительно снижает точность результатов анализа.

Известен способ определения кислотного числа рапсового лецитина, включающий отбор пробы рапсового лецитина, последовательное смешивание пробы с четыреххлористым углеродом при соотношении по массе «рапсовый лецитин - четыреххлористый углерод», равном (1:4)÷(1:4,5), и с водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 при соотношении по массе «рапсовый лецитин - водный раствор гидроксида натрия», равном (1:1)÷(1:1,1), помещение полученной смеси в датчик ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа рапсового лецитина по уравнению К.ч.=2,226+0,900⋅Ам (пат. RU 2715480, опубл. 28.02.2020, Бюл. №7).

Недостатком этого способа является также отсутствие возможности его применения для определения кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа, так как его химический состав значительно отличается от химического состава рапсового лецитина, что приводит к снижению точности результатов измерений.

Наиболее близким к заявляемому является способ определения кислотного числа подсолнечного лецитина, включающий отбор пробы подсолнечного лецитина, последовательное смешивание пробы с четыреххлористым углеродом при соотношении по массе «подсолнечный лецитин - четыреххлористый углерод», равном (1:5)-(1:5,5), и с водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 при соотношении по массе «подсолнечный лецитин - водный раствор гидроксида натрия», равном (1:0,7)÷(1:0,9), помещение полученной смеси в датчик ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа подсолнечного лецитина по уравнению К.ч.=3,0554+0,9608⋅Ам (патент RU 2690022, опубл. 30.05.2019, Бюл. №16).

Следует отметить, что указанный способ применим только для определения кислотного числа жидкого лецитина, полученного из подсолнечного масла линолевого типа.

Учитывая это, недостатком указанного способа является также отсутствие возможности его применения для определения кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа, что обусловлено значительными отличиями жирнокислотного и группового состава жидкого лецитина, полученного из подсолнечного масла олеинового типа, и жидкого лецитина, полученного из подсолнечного масла линолевого типа.

Технической проблемой, решаемой заявляемым изобретением, является создание высокоэффективного способа определения кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа, обеспечивающего высокую точность результатов анализа.

Техническим результатом заявляемого изобретения является достижение высокой точности результатов анализа при определении кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа.

Технический результат достигается тем, что в способе определения кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа, включающем отбор пробы лецитина, последовательное смешивание пробы с четыреххлористым углеродом и водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 с получением смеси, помещение полученной смеси в датчик импульсного ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа по уравнению, смешивание пробы лецитина с четыреххлористым углеродом осуществляют при соотношении по массе «лецитин - четыреххлористый углерод», равном (1:6)÷(1:6,5), а смешивание водного раствора гидроксида натрия осуществляют в течение 30-40 секунд при соотношении по массе «лецитин - водный раствор гидроксида натрия», равном (1:1,2)÷(1:1,3), при этом для вычисления значения кислотного числа используют уравнение: К.ч.=3,6567+0,8233⋅Ам.

Примеры осуществления заявляемого способа приведены ниже.

Пример 1. Отбирают пробу лецитина массой 5 г, добавляют к пробе лецитина 30 г четыреххлористого углерода (соотношение «лецитин -четыреххлористый углерод», равное 1:6), перемешивают полученную смесь при температуре 23°С в течение 10 секунд, затем в полученную смесь добавляют 6 г водного раствора гидроксида натрия концентрацией 1,1 моль/дм3 (соотношение «лецитин - водный раствор гидроксида натрия», равное 1:1,2), перемешивают полученную смесь в течение 30 секунд. Затем полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам).

Значение кислотного числа лецитина, полученного из подсолнечного масла олеинового типа, вычисляют по градуировочному уравнению (К.ч.=3,6567+0,8233⋅Ам) зависимости кислотного числа лецитина от амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) (Фиг.).

Градуировку ЯМР-анализатора осуществляют по образцам жидкого лецитина, полученного из подсолнечного масла олеинового типа, с известными значениями К.ч., найденными по стандартной методике.

Пример 2. Отбирают пробу лецитина массой 5 г, добавляют к пробе 32,5 г четыреххлористого углерода (соотношение «лецитин - четыреххлористый углерод», равное 1:6,5), перемешивают полученную смесь при температуре 23°С в течение 10 секунд, затем в полученную смесь добавляют 6,5 г водного раствора гидроксида натрия концентрацией 0,9 моль/дм3 (соотношение «лецитин - водный раствор гидроксида натрия», равное 1:1,3), перемешивают полученную смесь в течение 40 секунд. Затем полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам).

Значение кислотного числа лецитина, полученного из подсолнечного масла олеинового типа, вычисляют по градуировочному уравнению К.ч.=3,6567+0,8233⋅Ам.

Параллельно определяли кислотное число лецитина по известному способу - прототипу, который предназначен для определения кислотного числа лецитина, полученного из подсолнечного масла линолевого типа,

В таблице приведены показатели, характеризующие эффективность заявляемого способа по сравнению с известным.

Из данных таблицы видно, что заявляемый способ, по сравнению с известным, характеризуется более высоким показателем точности, что подтверждается более низкими границами относительной погрешности.

Способ определения кислотного числа жидкого лецитина, полученного из подсолнечного масла олеинового типа, включающий отбор пробы лецитина, последовательное смешивание пробы лецитина с четыреххлористым углеродом и водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 с получением смеси, помещение полученной смеси в датчик импульсного ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа по уравнению, отличающийся тем, что смешивание пробы лецитина с четыреххлористым углеродом осуществляют при соотношении по массе лецитин/четыреххлористый углерод, равном (1:6)÷(1:6,5), а смешивание водного раствора гидроксида натрия осуществляют в течение 30-40 секунд при соотношении по массе лецитин/водный раствор гидроксида натрия, равном (1:1,2)÷(1:1,3), при этом для вычисления значения кислотного числа используют уравнение: К.ч.=3,6567+0,8233⋅Ам.



 

Похожие патенты:

Использование: для передающей или приемной антенны летательного аппарата в дециметровом диапазоне длин волн. Сущность изобретения заключается в том, что устройство обнаружения сигналов ядерного квадрупольного резонанса содержит генератор качающей частоты, усилитель мощности и согласующее устройство, формирователь импульсов частотных, формирователь импульсов временных, формирователь информации приемной системы, блок фильтров, блок анализа спектра ядерного квадрупольного резонанса излучения, блок исследования спектра ядерного квадрупольного резонанса излучения, при этом дополнительно введены многочастотная синфазная приемная антенная система с приемом нормально и параллельно поляризованных электромагнитных волн, многочастотная синфазная передающая антенная система с излучением нормально поляризованной электромагнитной волной, при этом выход генератора качающей частоты соединен с входом усилителя мощности параллельно через формирователь импульсов частотных, через первый включатель Вк.1, а также через формирователь временных импульсов, через второй включатель Вк.2; выход усилителя мощности соединен параллельно с входом согласующего устройства передающей системы и через n1 вход с формирователем информации приемной системы; n выходов согласующего устройства передающей системы соединены с каждым из n в системе излучателей 7 через клемму «ж», начиная с 71 до 7N; n входов формирователя информации приемной системы соединены с N синфазными линейками 6, например n входов формирователя информации соединены с первой синфазной приемной линейкой от первой антенны 611 до n 61N; выход формирователя информации приемной системы соединен с блоком исследования спектра излучения сигналов ядерного квадрупольного резонанса через блок фильтров и через блок анализа спектра излучения сигналов ядерного квадрупольного резонанса; излучающая часть устройства обнаружения излучателей ядерного квадрупольного резонанса излучения размещена между двумя экранирующими плоскостями, выполненными в виде усеченных цилиндрических плоскостей.

Использование: для определения сравнительных свойств объекта, содержащего целлюлозу. Сущность изобретения заключается в том, что в процессе проведения исследований для пробоподготовки изымают образцы поверхностного слоя целлюлозосодержащего материала объекта исследований на участках с покрытием и на участках без покрытия в виде дисков диаметром в диапазоне 0,3-0,55 мм и толщиной не менее 0,03 мм с помощью инструмента пробойника, имеющего внешний диаметр не более 0,6 мм, затем из каждого полученного образца целлюлозосодержащего материала под микроскопом извлекают образец целлюлозы, каждый образец целлюлозы размещают в отдельном контейнере (чистой пробирке) и помещают в импульсный ЯМР спектрометр, на основе данных которого производят определение усредненных индексов кристалличности в целлюлозе, изъятой на участках под покрытием, и в целлюлозе на участках, не имеющих покрытия, плотности протонов в целлюлозе на участках, не имеющих покрытия, и плотности протонов в целлюлозе на участках под покрытием, на основании которых вычисляют относительную величину изменений параметров целлюлозы по заданной формуле, причем указанные выше действия и расчеты производят для исследуемого объекта и объекта-эталона, либо объекта, с которым сравнивают первичный объект исследования, далее в процессе анализа определяют регрессионную зависимость параметров исследуемых объектов (линию регрессии) и вычисляют максимальное отклонение линий регрессии друг от друга.

Изобретение относится к определению свойств пластовых флюидов, одновременно находящихся в поровом пространстве образца горной породы. При осуществлении способа отбирают несколько естественно-насыщенных образцов горной породы, относящихся к одному пласту, таким образом, чтобы на одно место взятия приходилось 2 образца.

Использование: для определения параметров полноразмерных кернов. Сущность изобретения заключается в том, что устройство для определения параметров полноразмерных кернов содержит корпус, представляющий собой несущий каркас; блок магнита и катушек, блок перемещения керна, блок электроники, прикрепленные к корпусу, при этом блок магнита и катушек выполнен в виде постоянного магнита по структуре Хальбаха с цилиндрическим зазором внутри него, причем в цилиндрическом зазоре постоянного магнита установлена градиентная катушка, образующая внутри своего корпуса цилиндрический зазор, причем в цилиндрическом зазоре градиентной катушки установлена радиочастотная катушка, образующая внутри своего корпуса цилиндрический зазор для прохождения сквозь него полноразмерного керна, блок электроники выполнен с возможностью управлять блоком перемещения керна так, чтобы обеспечивать перемещение керна сквозь блок магнита и катушек с заданной скоростью, и управлять блоком магнита и катушек так, чтобы формировать с помощью приемопередающей катушки и градиентной катушки сигнал ЯМР с заданными параметрами, принимать и обрабатывать отклик керна на это воздействие, определять параметры керна на основании отклика, причем градиентная катушка состоит из двух зеркально симметричных частей, каждая из которых представляет собой последовательное соединение двух полукруглых и четырех прямолинейных участков проводников, причем полукруглые участки проводников каждой части имеют радиус r, смещены друг относительно друга на расстояние 2*H и находятся в параллельных плоскостях, концы полукруглых участков соединены друг с другом посредством четырех прямолинейных участков проводников, проходящих через точку, находящуюся посередине между полукруглыми участками и удаленную от оси, соединяющей центры полукруглых участков, на расстояние R, причем части градиентной катушки соединены навстречу друг другу, отношение R/r равно по существу 12:7, а отношение H/R равно по существу 15:12.

Изобретение относится к способам идентификации постоянных магнитов по объемной намагниченности из опытной партии, изготовленной из одинаковой марки сплава, форму и геометрию. Способ идентификации постоянных магнитов и устройство в виде испытательного стенда учитывает объемную намагниченность опытных образцов постоянных магнитов по магнитной силе отталкивания их от магнитного отражателя на различных расстояниях между ними, а также позволяет определить соответствие экспериментальных данных нормальному закону распределения.

Группа изобретений относится к области медицины и фармацевтики, а именно к соединению формулы II для комплексообразования изотопов металлов: где X обозначает хелатообразователь, выбранный из ДОТК (1,4,7,10-тетраазациклододекан-1,4,7,10-тетрауксусная кислота), ДОТКГК (додека-1-глутаровая кислота-1,4,7,10-тетрааминтриуксусная кислота), ДОТКМ (1,4,7,10-тетракис-(карбамоилметил)-1,4,7,10-тетраазациклододекан) и других производных ДОТК, НОТК (нона-1,4,7-триаминтриуксусная кислота) и ее производных, таких как НОТКГК (1,4,7-триазациклононан,1-(глутаровая кислота),4,7-уксусная кислота), ААЗТК (6-амино-6-метилпергидро-1,4-диазепин-N,N,N',N'-тетрауксусная кислота), и R3 обозначает ; а также к фармацевтическим средствам, состоящим из соединения формулы II и образующих с ним комплекс изотопов металлов, к способу получения указанного средства и к его применению в диагностических способах, в способах лечения костных заболеваний и в качестве добавок в искусственном костном веществе, в костном цементе или в костных имплантатах.

Использование: для градуировки и поверки ЯМР-анализаторов для количественного определения содержания фосфолипидов в соевом лецитине. Сущность изобретения заключается в том, что имитатор сигналов свободной прецессии ядерного магнитного резонанса и спинового эха от масла и фосфолипидов в соевом лецитине включает полиметилсилоксановую жидкость марки ПМС-5000 с временем спин-спиновой релаксации 130-160 мс в количестве 1,03-1,37 г, полиэтилсилоксановую жидкость марки ПЭС-5 с временем спин-спиновой релаксации 30-40 мс в количестве 0,30-0,34 г и натуральный латекс с временем спин-спиновой релаксации 2-4 мс в количестве 3,0 г.

Использование: для градуировки и поверки ЯМР-анализаторов для количественного определения содержания фосфолипидов в рапсовом лецитине. Сущность изобретения заключается в том, что имитатор сигналов свободной прецессии ядерного магнитного резонанса и спинового эха от масла и фосфолипидов в рапсовом лецитине включает полиметилсилоксановую жидкость марки ГТМС-5000 с временем спин-спиновой релаксации 130-160 мс, полиэтилсилоксановую жидкость марки ПЭС-5 с временем спин-спиновой релаксации 30-40 мс и натуральный латекс с временем спин-спиновой релаксации 2-4 мс, при этом количество полиметилсилоксановой жидкости марки ПМС-5000 составляет 1,05-1,34 г, а количество натурального латекса - 2,75 г.

Использование: для определения количественного содержания компонент в исследуемых смесях с помощью обработки данных, полученных методом ядерного магнитного резонанса. Сущность изобретения заключается в том, что времена продольной и поперечной релаксации образца, полученные стандартными способами на ЯМР-спектрометре или релаксометре, используются для решения феноменологических уравнений Блоха с учётом условий их регистрации, после чего проводится подбор качественного состава примесей и их объёмов таким образом, чтобы решения уравнения Блоха для исследуемой смеси совпадали с решением, полученным для смоделированной смеси, учитывающим различный вклад присутствующих в смеси примесей в сигналы поглощения и дисперсии, а также специфику формирования сигнала ядерного магнитного резонанса от смеси, образованной близкими по химическому составу и физическому строению веществами, после чего из коэффициентов для различных примесей смоделированной смеси определяется количественное содержание примесей в исследуемой смеси.

Группа изобретений относится к автоматизированному неинвазивному определению оплодотворения яйца птицы. Способ включает следующие этапы: последовательную или параллельную конвейерную подачу множества яиц птицы в ЯМР-аппарат, подвергание яиц птицы ЯМР-измерению, например, для генерации трехмерного изображения ЯМР по меньшей мере части каждого из упомянутых яиц, причем упомянутое трехмерное изображение ЯМР имеет пространственное разрешение в по меньшей мере одном измерении 1,0 мм или менее, предпочтительно - 0,50 мм или менее, причем упомянутая часть яйца (14) включает зародышевый диск соответствующего яйца, определение прогноза оплодотворения согласно по меньшей мере одной из следующих двух процедур: (i) выявление по меньшей мере одного признака из каждого из упомянутых трехмерных изображений ЯМР и использование упомянутого по меньшей мере одного признака в классификаторе на основе признаков для определения прогноза оплодотворения, и (ii) использование алгоритма глубокого обучения и, в частности, алгоритма глубокого обучения на основе сверточных нейронных сетей, генеративно-состязательных сетей, рекуррентных нейронных сетей или нейронных сетей долгой краткосрочной памяти.
Наверх