Жидкостный ракетный двигатель с электронасосной системой подачи

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель (ЖРД) с электронасосной системой подачи низкокипящих компонентов топлива, включающий регенеративно охлаждаемую камеру сгорания, электронасосные агрегаты для подачи компонентов топлива в камеру, блок питания электронасосных агрегатов на основе аккумуляторных батарей, при этом в состав двигателя включен турбоэлектрогенератор, вход в турбину которого сообщен с магистралью выхода из тракта охлаждения камеры газифицированного в нем низкокипящего компонента топлива; выход из турбины сообщен с магистралью входа этого компонента топлива в полость форсуночной головки камеры, а клеммы электрогенератора связаны кабелем через преобразователь в виде зарядного устройства и автоматический прерыватель электрической цепи с клеммами блока питания электроприводов насосов. Изобретение обеспечивает улучшение массовых характеристик двигателя с электронасосной системой подачи низкокипящих компонентов топлива за счет снижения количества и массы аккумуляторных батарей в блоке питания электронасосных агрегатов. 1 ил.

 

Изобретение относится к ракетной технике и может быть использовано в конструкциях жидкостных ракетных двигателей (ЖРД) с электронасосной системой подачи низкокипящих (криогенных) компонентов топлива в камеру сгорания.

В настоящее время в связи с успехами в создании энергоемких аккумуляторных батарей с удельной емкостью до 350 Вт⋅час/кг и относительно легких вентильных электродвигателей на постоянных магнитах с удельной массой ≤0,2 кг/КВт сформировался новый класс ЖРД с электронасосной системой подачи топлива в камеру сгорания. В таких двигателях привод каждого насоса, подающего компонент топлива в камеру, осуществляется индивидуальным электродвигателем постоянного тока с питанием его через преобразователь от литий-ионных или литий-полимерных аккумуляторных батарей, обладающих наилучшими массовыми характеристиками.

В диапазоне тяг от 0,4 тс до ~2 тс двигатели с электронасосной системой подачи топлива могут составить конкуренцию традиционно используемым в данном диапазоне тяг двигателям с турбонасосной системой подачи топлива, выполненным по схеме без дожигания рабочего тела турбины, имея такие качества, как отсутствие потерь удельного импульса, связанных с выхлопом отработанного в турбине генераторного газа, отсутствие газогенератора и теплонапряженных высокотемпературных элементов систем подачи (турбина, газоводы, выхлопные сопла); отсутствие специальных функциональных систем: системы агрегатов, обеспечивающих раскрутку ТНА при запуске двигателя, системы агрегатов регулирования тяги и соотношения расходов компонентов топлива через двигатель - функции этих систем обеспечиваются за счет изменения скоростей вращения электронасосов и, соответственно, расходов компонентов топлива в камеру по командам системы управления РН. Указанными качествами обладает двигатель «Rutherford» с тягой -2 тс, используемый в составе I и II ступеней РН «Elecktron», разработанный дочерним предприятием частной американской компанией «Rocket Lab». Этот двигатель принят за прототип изобретения. Недостаток ЖРД, выполненного по схеме прототипа, заключается в существенном возрастании массы блока питания на основе аккумуляторных батарей даже с высокими удельными характеристиками, указанным выше, при переходе к большим тягам, превышающим верхний предел указанного выше диапазона при более высоких давлениях в камере, обеспечивающих приемлемый удельный импульс в атмосферных условиях.

Так, если при тяге двигателя 2000 кгс на уровне моря (давление окружающей среды - 1 ата) и давлении в камере 20 ата, при котором удельный импульс двигателя равен 254 с, мощность суммарного электропотребления двигателя равна ~44 КВт, а масса батарей, обеспечивающих работу двигателя в течение 140 с (I ступень РН) равна ~6 кг, то при тяге двигателя в атмосферных условиях 4000 кгс при давлении в камере 60 ата, обеспечивающим удельный импульс 287 с, мощность электропотребления двигателя, выполненного по схеме прототипа, составит уже 311 КВт, а потребная масса батарей, обеспечивающих работу двигателя в течение вышеуказанного времени, увеличится до ~36 кг, что составляет ~37% массы двигателя. При дальнейшем увеличении тяги и давления в камере доля батарей в массе двигателя будет только возрастать, что существенно ухудшает массовые характеристики двигателя с электронасосной системой подачи и делает его неконкурентноспособным по сравнению с двигателем, использующим турбонасосную систему подачи.

Изобретение направлено на улучшение массовых характеристик двигателя с электронасосной системой подачи низкокипящих компонентов топлива за счет снижения количества и массы аккумуляторных батарей в блоке питания электронасосных агрегатов. Результат обеспечивается тем, что в состав двигателя включен турбоэлектрогенератор (электрогенератор с турбинным приводом), вход в турбину которого сообщен с магистралью выхода из тракта охлаждения камеры газифицированного в нем низкокипящего компонента топлива, выход из турбины сообщен с магистралью входа этого компонента топлива в форсуночную головку камеры, а клеммы электрогенератора скоммутированы кабелем через преобразователь вырабатываемого турбоэлектро генератором электрического тока, выполненный в виде зарядного устройства, и автоматический прерыватель электрической цепи с клеммами блока питания электроприводов насосов.

При таком исполнении двигателя с электронасосной системой подачи топлива возможны питание электроприводов насосов от двух источников: от электрогенератора и блока аккумуляторных батарей, а также подзарядка аккумуляторных батарей блока питания при падении напряжения на его выходе вследствие разряда батарей ниже напряжения подаваемого от электрогенератора, вследствие чего начальная электроемкость и мощность электропитания могут быть рассчитаны на потребную мощность электроприводов насосов за вычетом электрической мощности, поступающей от электрогенератора на клеммы блока питания в течение всего времени работы двигателя.

На рисунке представлена схема предполагаемого двигателя с электронасосной системой подачи топлива.

В состав двигателя входят регенеративно охлаждаемая камера 1, электронасосные агрегаты окислителя ЭНО и горючего ЭНГ с электроприводами 2, 3 насосов 4, 5, турбоэлектрогенератор (ТЭГ), турбина 6 которого сообщена входом с магистралью 7 на выходе тракта охлаждения камеры 1 и выходом - с магистралью 8 на входе в форсуночную головку камеры 1. Клеммы электрогенератора 9 через автоматический прерыватель 10 электрической цепи 11 и преобразователь 12 электрически соединены с соответствующими клеммами на общем электрическом выходе аккумуляторных батарей 13 блока питания (БП) - входе в преобразователь 14 постоянного электрического тока, поступающего от БП.

При работе двигателя после достижения номинальных оборотов ЭНО и ЭНГ автоматический прерыватель 10 замыкает электрическую цепь между клеммами электрогенератора 9 и клеммами общего электрического выхода аккумуляторных батарей 13 блока питания, после чего при снижении напряжения постоянного электрического тока на клеммах батарей в допустимых пределах, но ниже напряжения постоянного электрического тока, поступающего через преобразователь 12 от электрогенератора 9 (или при равенстве их), питание ЭНО, ЭНГ осуществляется от 2-х источников БП и ТЭГ.

Расчетная оценка, проведенная по отношению к ЖРД с тягой 4 тс с электронасосной системой подачи топлива «жидкий кислород + СПГ» при давлении в камере 60 кгс/см2 показывает, что турбоэлектрогенератор, турбина которого включена в магистраль газифицированного СПГ на выходе тракта охлаждения камеры, обеспечивает выработку при КПД 0,95 электрогенератора - 225 КВт электрической мощности при избыточных затратах на потребную мощность насоса горючего 76 КВт, то есть в течение всего времени работы двигателя необходимая электрическая мощность на питание ЭНО и ЭНГ с КПД 0,95 и подзарядку батарей составит величину 138 КВт (при суммарной потребной мощности привода насосов 280 КВт) вместо 311 КВт у прототипа. Соответственно требуемые энергоемкости БП при времени работы двигателя 140 с равны 19320 КВт⋅с и 43540 КВт⋅с, а массы аккумуляторных батарей, обеспечивающих такие емкости при перспективной удельной массовой характеристике ~350 Вт час/кг равны соответственно 15 кг и 35 кг, что, с учетом массы преобразователя напряжения 2 кг, обеспечивает выигрыш в массе двигателя по изобретению ~18 кг по сравнению с двигателем по прототипу.

Жидкостный ракетный двигатель (ЖРД) с электронасосной системой подачи низкокипящих компонентов топлива, включающий регенеративно охлаждаемую камеру сгорания, электронасосные агрегаты для подачи компонентов топлива в камеру, блок питания электронасосных агрегатов на основе аккумуляторных батарей, отличающийся тем, что в состав двигателя включен турбоэлектрогенератор, вход в турбину которого сообщен с магистралью выхода из тракта охлаждения камеры газифицированного в нем низкокипящего компонента топлива; выход из турбины сообщен с магистралью входа этого компонента топлива в полость форсуночной головки камеры, а клеммы электрогенератора связаны кабелем через преобразователь в виде зарядного устройства и автоматический прерыватель электрической цепи с клеммами блока питания электроприводов насосов.



 

Похожие патенты:

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), ядерных ракетных двигателях (ЯРД) и энергоустановках различного назначения. Двигательная установка, содержащая баки компонентов топлива, ракетный двигатель с насосной подачей компонентов топлива, систему управления, при этом привод насосов двигателя электрический, с электроприводами по линии каждого из компонентов топлива, а в состав двигательной установки входит система электропитания и управления, содержащая электронный блок управления электропитанием и регулирования, а также накопительное устройство, например, аккумуляторная батарея и/или суперконденсатор.

Изобретение относится к области ракетного двигателестроения и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Жидкостный ракетный двигатель содержит камеру сгорания с трактом охлаждения и форсуночной головкой, генератор синтез-газа, турбонасосный агрегат, включающий в себя насос окислителя, насос горючего, насос воды и турбину, вход которой сообщается с выходом генератора синтез-газа, а выход с форсуночной головкой, при этом охлаждение камеры сгорания осуществляется горючим, в варианте исполнения охлаждение камеры сгорания осуществляется водой.

Изобретение относится к жидкостным ракетным двигателям. Система (22) управления потоком содержит сеть (34) топливных каналов, содержащую первую (36) и вторую (38) части сети, расположенные друг относительно друга с возможностью параллельного протекания по ним потоков.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), ядерных ракетных двигателях (ЯРД) и энергоустановках различного назначения. Жидкостный ракетный двигатель состоит из камеры 1, турбонасосного агрегата (ТНА) 2, бустерных насосных агрегатов 3 (БНА1) и 4 (БНА2), установленных на линии каждого из компонентов топлива.

Настоящее изобретение относится к устройству для определения неисправности и способу определения неисправности. Устройство для определения неисправности согласно одному аспекту настоящего изобретения представляет собой устройство для определения неисправности, которое выполнено с возможностью определения неисправности устройства подачи текучей среды под давлением, используемого в насосе, причем устройство для определения неисправности содержит блок считывания реакции на механическое напряжение, выполненный с возможностью считывания реакции на механическое напряжение, указывающей на временное изменение механического напряжения, приложенного к устройству подачи текучей среды под давлением, блок вычисления степени накопленных усталостных повреждений, выполненный с возможностью вычисления степени накопленных усталостных повреждений устройства подачи текучей среды под давлением на основании реакции на механическое напряжение, блок вычисления скорости уменьшения срока службы, выполненный с возможностью вычисления скорости уменьшения срока службы, которая представляет собой скорость изменения степени накопленных усталостных повреждений во времени, и блок определения, выполненный с возможностью определения неисправности устройства подачи текучей среды под давлением на основании степени накопленных усталостных повреждений и скорости уменьшения срока службы, причем устройство подачи текучей среды под давлением выполнено с возможностью его использования только в течение заданного времени использования при эксплуатации насоса.

Изобретение относится к устройствам подачи топлива в ракетный двигатель. Устройство (10А, 10В) для подачи топлива в ракетный двигатель содержит по меньшей мере один топливный бак (10, 11), камеру (18) сгорания и подводящий трубопровод (12, 13), проходящий от бака (10, 11) к камере (18) сгорания для подачи ракетного топлива в камеру сгорания.

Изобретение относится к аэрокосмической области, в частности к области летательных аппаратов, приводимых в движение ракетными двигателями, а также к подающей цепи (6) для запитки ракетного двигателя (2) по меньшей мере первым компонентом жидкого топлива, при этом подающая цепь включает в себя по меньшей мере один первый теплообменник (18), пригодный, чтобы быть присоединенным к цепи (17) охлаждения для охлаждения по меньшей мере одного источника тепла посредством передачи тепла первому компоненту топлива, и дополнительно после упомянутого первого теплообменника - ответвление, проходящее через второй теплообменник.

Изобретение относится к жидкостным ракетным двигателям. Ракетный двигатель в сборе (5), включающий в себя бак (30B) для жидкого кислорода, двигатель (10), имеющий камеру сгорания (12), и «нагреватель» теплообменник (46) для превращения в пар жидкого кислорода.

Изобретение относится к авиационно-космической области, и, в частности, к области летательных аппаратов, приводимых в движение ракетными двигателями. В частности, изобретение относится к схеме (6) питания для снабжения ракетного двигателя (2) по меньшей мере первым жидким топливом, причем упомянутая схема питания включает в себя по меньшей мере один буферный бак (20) для упомянутого первого жидкого топлива и первый теплообменник (18), который встроен в упомянутый буферный бак (20) и приспособлен для подсоединения к схеме (17) охлаждения для охлаждения по меньшей мере одного источника питания, чтобы охлаждать упомянутый источник тепла посредством передачи тепла первому топливу.

Изобретение относится к области ракетных двигателей, более конкретно к системе подачи ракетного топлива в ракетный двигатель (2), включающей в себя первый бак (3), второй бак (4), первую систему питания (6), соединенную с первым баком (3), и вторую систему питания (7), соединенную со вторым баком (4).
Наверх