Способ получения гранулированной асфальтобетонной смеси на основе дисперсных промышленных и бытовых отходов

Изобретение относится к дорожному строительству, а именно к технологии приготовления асфальтобетонных смесей для верхних слоев дорожного полотна. Технический результат заключается в улучшении физико-механических свойств с более низкой себестоимостью, исключении образования вредных выделений при укладке дорожного полотна и возможности масштабной утилизации промышленных и бытовых отходов. Способ получения гранулированной асфальтобетонной смеси, включающий гранулирование материала методом окатывания при температуре 130-150°С минеральным порошком со связующим, представляющим смесь дорожного битума с 15-20% от массы связующего, полиэтилентерефталата, вводимого в битум при температуре плавления пластика, причем асфальтовяжущее вещество, состоящее из минерального порошка и связующего, наносится на минеральные частицы диаметром 5-10 мм, содержание асфальтовяжущего в гранулах составляет 3-45% от массы смеси и укладка смеси в дорожное полотно может производиться при температуре 80-100°С. 3 табл.

 

Изобретение относится к дорожному строительству, а именно к технологии приготовления асфальтобетонных смесей для верхних слоев дорожного полотна, обладающих повышенными показателями прочности и водостойкости, обеспечивающими долговечность дорожного покрытия. Как показывает практика, наибольшие разрушения асфальтобетонного полотна наблюдаются в период межсезонья при знакопеременных температурах в течение суток. Эффект разрушения обусловлен просачиванием воды в поры асфальтобетона, которая при замерзании расширяется, разрывая покрытие. В соответствии с этим прочность и водостойкость асфальтобетона являются основными показателями, обеспечивающими долговечность асфальтобетонного покрытия.

Основными факторами, определяющими значения этих показателей, являются эффекты структурирования компонентов асфальтобетонной смеси. Эффект структурирования сводится к возникновению дополнительных межмолекулярных связей между составляющими композиционного материала. Проявление структурирования может быть обеспечено как чисто технологическими приемами получения асфальтобетонной смеси, так и введением в структуру композита добавок, обусловливающих возникновение дополнительных химических связей.

Технологически структурирование асфальтобетона возможно путем создания максимально плотной структуры композита с минимальными по толщине пленками связующего между частицами минеральной части асфальтобетонной смеси. Плотная структура асфальтобетона формируется путем подбора грануляционного состава минеральной части смеси. Однако основным структурообразующим компонентом композита является минеральный порошок, свободная поверхность которого несоизмеримо больше поверхности всех остальных дисперсных частиц материала. В соответствии с этим создание упорядоченного расположения частиц минерального порошка в смеси с битумом, получившей название асфальтовяжущего, может обеспечить структурирование асфальтобетонной смеси.

Известен способ получения асфальтобетонной смеси по патенту № 2182136, в котором асфальтовяжущее вещество получают гранулированием минерального порошка методом окатывания с использованием битума в качестве связующего. Гранулирование окатыванием позволяет сформировать упорядоченную структуру частиц минерального порошка в грануле, обеспечивающую проявление эффекта структурирования. Далее гранулированное асфальтовяжущее вводится в разогретые крупнодисперсные фракции асфальтобетона и перемешивается. Полученная смесь обладает повышенными показателями прочности и водостойкости, что создает предпосылки для получения долговечного дорожного покрытия.

Гранулированное асфальтовяжущее вещество не проявляет склонности к слеживанию и способно к длительному хранению в холодном состоянии без потери эксплуатационных показателей. Однако асфальтобетонная смесь, полученная с применением такого асфальтовяжущего по традиционной технологии такими свойствами не обладает, а предполагает укладку в дорожное в дорожное полотно непосредственно после приготовления, не допуская охлаждения смеси. С учетом масштабов дорожного строительства в Российской Федерации и сезонного характера дорожных работ достаточно часто возникают ситуации, когда действующие асфальтобетонные заводы (АБЗ) не могут полностью обеспечить потребностей строителей. В этих условиях оптимальным было бы иметь запасы заранее заготовленной продукции, ее хранение в холодном состоянии с дальнейшим использованием по мере необходимости. В качестве такого продукта можно было бы использовать гранулированное асфальтовяжущее, однако его себестоимость достаточно высока в связи с высоким содержанием битума, что ограничивает возможности промышленного использования и вызывает необходимость поиска других путей разрешения обозначенной проблемы.

Другим методом обеспечения прочности и водостойкости асфальтобетона путем структурирования материала является введение полимерных добавок в структуру материала. Применение полимеров для модификации дорожных битумов в производстве асфальтобетона в последние годы достаточно широко используется в дорожном строительстве. Наибольшее распространение получили каучукоподобные полимеры (эластомеры) типа СБС (тройной блоксополимер бутадиенстирол-бутадиен). Эффективность действия этого материала обеспечивается тем, что один из компонентов блоксополимера (а именно полибутадиен) хорошо совмещается с углеводородными составляющими битума, формируя пространственную структуру материала.

Перечень патентов по модификации дорожных битумов полимерами типа СБС достаточно широк. Более того, имеются ГОСТ Р 52056-2003 по использованию этих полимеров для модификации дорожных битумов. Среди известных способов приготовления полимерных композиций на основе СБС можно привести патенты № 2152964, № 2258721, № 903450, и достаточно большое количество других патентов, отличающихся друг от друга способами введения полимеров в битум и использованием различного вида добавок в связующее. Использование эластомеров в качестве модификаторов дорожного битума позволяет сформировать в структуре дорожного покрытия пространственную сетку, обусловленную химическими связями молекул полимера, приводящую к структурированию композиционного материала.

Основным недостатком этих способов структурирования асфальтобетонной смеси является дороговизна применяемых полимерных добавок, а также технологические проблемы, связанные с получением полимер битумных композиций.

Одним из возможных способов решения указанной проблемы является использование в качестве модификаторов битума полимерных добавок, являющихся отходами пластика, в частности, полиэтилентерефталата, материала, из которого изготавливается большая часть бытовой пластиковой тары (пластиковые бутылки). Объем этого вида пластика в общем объеме полимерных отходов составляет порядка 20 %, что составляет серьезную экологическую проблему не только для нашей страны, но и для всего человечества. Использование полиэтилентерефталата в качестве модификатора битума в такой материалоемкой отрасли как дорожное строительство позволило бы хотя бы частично разрешить эту проблему.

Известен патент асфальтобетонная смесь №2262492, в котором для модификации битума с целью усиления процессов структурообразования асфальтобетона и повышения его водо- и теплоустойчивости используют полимерную добавку в виде б/у пластиковых бутылок. Введение полимерной добавки в виде вторичного полиэтилентерефталата придает асфальтобетонной смеси новые свойства за счет повышения адгезии битума с минеральными компонентами, т.к. полиэтилентерефталат содержит полярные сложноэфирные группы, способствующие лучшему сцеплению битума с поверхностью минерального материала. Это позволяет инициировать процессы структурообразования в композите и улучшить основные физико-механические характеристики асфальтобетона.

Недостаток рассмотренного способа состоит в ограниченном использовании отходов пластика, что не позволяет кардинально решить проблему его утилизации. Использование полиэтилентерефталата в качестве модификатора битума ограничено мощностью действующих производств асфальтобетона, что не может обеспечить масштабной утилизация накопленных пластиковых отходов.

Известен способ получения гранулированного асфальтовяжущего на основе фосфогипса по патенту № 2701007, выбранному в качестве прототипа. Гранулированное асфальтовяжущее в этом способе получают окатыванием высушенного фосфогипса, используемого в качестве минерального порошка, со связующим, представляющим смесь дорожного битума с 15 - 20 % от массы связующего полиэтилентерефталата. Процесс гранулирования осуществляется при 130 - 150 °С, а содержание связующего в асфальтовяжущем составляет 16 - 20 % от массы смеси.

Полученное асфальтовяжущее обладает высокими показателями прочности и водостойкости и способностью к длительному хранению в холодном состоянии без потери эксплуатационных показателей, что позволяет организовать круглогодичное производство и обеспечить масштабную утилизацию промышленного отхода в виде фосфогипса и бытового отхода - полиэтилентерефталата. Повышение прочности и водостойкости материала обеспечивается эффектом структурирования как за счет технологического приема - гранулирования окатыванием, так и вследствие создания дополнительных межмолекулярных связей, обусловленных присутствием полиэтилентерефталата в связующем.

Основным недостатком рассмотренного способа является достаточно высокая себестоимость получаемого продукта, обусловленная повышенным содержанием битума. Кроме того, фосфогипс является достаточно специфическим материалом, а его использование целесообразно в регионах близлежащих к предприятиям по производству фосфорных удобрений. Этот факт ограничивает сферу приложения предлагаемой технологи, снижая объемы утилизации бытовых отходов в виде полиэтилентерефталата.

Задачей, на решение которой направлено изобретение, является разработка асфальтобетона с улучшенными физико-механическими свойствами, не уступающего по свойствам прототипу, но с более низкой себестоимостью, исключением образования вредных выделений при укладке дорожного полотна и возможностью масштабной утилизации промышленных и бытовых отходов.

Поставленная задача достигается тем, что предлагается способ получения гранулированной асфальтобетонной смеси, в котором асфальтовяжущее вещество, состоящее из минерального порошка и связующего по способу прототип f наносят на минеральные частицы диаметром 5 - 10 мм, содержание асфальтовяжущего в гранулах составляет 30 - 45 % от массы смеси и укладку смеси в дорожное полотно можно производить при температуре 80 - 100°С.

Использование минеральных частиц диаметром 5 - 10 мм в качестве ядер гранулированного материала позволяет более чем в два раза снизать содержание асфальтовяжущего в конечно продукте с соответствующим снижением затрат битума на производство. Содержание асфальтовяжущего в гранулах в 30 - 45 % от массы смеси обеспечивает при уплотнении материала создание практически монолитной структуры, в которой ядра гранул плотно упакованы и разделены прослойками асфальтовяжущего, которое в этих условиях выступает в роли матрицы композиционного материала. При уплотнении гранулированной асфальтобетонной смеси оболочки гранул деформируются с образованием монолитной структуры с минимальной порозностью между частицами, обеспечивающей минимальное водонасыщение асфальтобетона.

Использование приведенных параметров позволяет получить материал, сопоставимый по свойствам продукту, получаемому в способе-прототипе. Подтверждением этого являются данные, приведенные в таблице 1. Исследовались различные асфальтобетонные смеси, в которых фосфогипс с Череповецкого филиала АО Фосагро использовался в качестве заменителя минерального порошка. Смеси I, II и III имели следующие составы:

I - гранулированное асфальтовяжущее:

- фосфогипс - 79,0 %;

- связующее битум БНД 60/90 - 21,0 %.

II - гранулированное асфальтовяжущее:

- фосфогипс - 76,0 %;

- связующее (битум + 20% ПЭТФ) - 24,0 %.

III - гранулированная асфальтобетонная смесь:

фосфогипс - 35,1%;

- гранитный щебень - 52,6 %;

- связующее (битум + 20% ПЭТФ) - 12,3%.

Таблица 1


п/п
Наименование показателей Ед. изм. I II III Требования ГОСТ
9128-2013
1 Плотность г/ 2,36 2,39 2,45 Не нормируется
2 Водонасыщение % 3,6 1,3 1,6 1,0 - 2,5
3 Предел прочности при сжатии при температуре
20°С
МПа 5,4 6,9 6,3 2,5
4 Предел прочности при сжатии при температуре
50°С
МПа 2,5 2,8 3,4 1,0
5 Предел прочности при сжатии при температуре
0°С
МПа 9,3 9,6 12,5 Не более 9,0
6 Сдвигоустойчивость по:
- коэффициенту внутреннего трения;
- сцеплению при сдвиге при температуре 50°С
МПа 0,68
1,02
0,72
1,04
0,76
1,38
Не менее 0,88
Не менее 0,25
7 Трещиностойкость по пределу прочности на растяжение при расколе при температуре 0°С и скорости деформирования 50 мм/мин МПа 3,26 3,62 3,9 Не менее 3,0 -
не более 5,5
8 Водостойкость - 0,36 1,09 1,06 0,95
9 Водостойкость при длительном водонасыщении - 0,27 0,90 0,90 0,90

Из приведенных в таблице данных следует, что гранулирование окатыванием фосфогипса чистым битумом без добавок пластика обеспечивает высокие прочностные показатели материала, но не обеспечивает его водостойкости. Введение полиэтилентерефталата в битум инициирует возникновение дополнительных межмолекулярных связей, обеспечивающих необходимый уровень водостойкости материала. Использование гранитного щебня в качестве ядер гранулированного материала (партия III) позволяет практически в два раза снизить содержание связующего от 24,0 до 12,3 %, что обеспечивает существенное снижение себестоимости продукта без снижения эксплуатационных показателей асфальтобетона. Приведенные в таблице данные свидетельствуют о возможности создания асфальтобетонной смеси с более низкой себестоимостью по сравнению со способом прототипом.

Проведенное исследование показало возможность масштабной утилизации промышленных отходов (фосфогипса) и бытовых отходов (полиэтилентерефталата) путем заготовки гранулированной асфальтобетонной смеси, ее складированием в холодном состоянии и укладке в дорожное полотно с предварительным разогревом. Однако использование фосфогипса в качестве минерального порошка асфальтобетона ограничивает сферу приложения предлагаемой технологии, снижая возможность утилизации бытовых отходов в виде полиэтилентерефталата. В связи с этим представляет интерес возможности применения предлагаемой технологии с использованием в качестве минерального порошка традиционных компонентов асфальтобетонной смеси.

В таблице 2 приведены результаты исследований асфальтобетонных смесей на основе минерального порошка МП-1 и битума, модифицированного полиэтилентерефталатом. В таблице показаны результаты исследований трех смесей:

I - гранулированное асфальтовяжущее:

минеральный порошок МП-1 - 83,0 %;

связующее битум БНД 60/90 - 17,0 %.

II - гранулированное асфальтовяжущее:

минеральный порошок МП-1- 76,0 %;

связующее (битум + 20% ПЭТФ) - 24,0 %.

III - гранулированная асфальтобетонная смесь:

минеральный порошок МП-1- 37,1 %;

гранитный щебень - 55,5 %;

связующее (битум + 20% ПЭТФ) - 7,4 %.

Таблица 2


п/п
Наименование показателей Ед. изм. I II III Требования ГОСТ
9128-2013
1 Плотность г/ 2,26 2,39 2,41 Не нормируется
2 Водонасыщение % 1,26 1,23 1,6 1,0 - 2,5
3 Предел прочности при сжатии при температуре
20°С
МПа 6,4 6,9 6,3 2,5
4 Предел прочности при сжатии при температуре
50°С
МПа 2,5 2,8 3,4 1,0
5 Предел прочности при сжатии при температуре
0°С
МПа 9,27 9,62 9,53 Не более 9,0
6 Сдвигоустойчивость по:
- коэффициенту внутреннего трения;
- сцеплению при сдвиге при температуре 50°С
МПа 0,48
1,02
0,76
1,04
0,88
1,38
Не менее 0,88
Не менее 0,25
7 Трещиностойкость по пределу прочности на растяжение при расколе при температуре 0°С и скорости деформирования 50 мм/мин МПа 3,46 3,82 3,93 Не менее 3,0 -
не более 5,5
8 Водостойкость - 0,96 1,05 1,03 0,95
9 Водостойкость при длительном водонасыщении - 0,87 0,97 0,90 0,90

Из приведенных данных видно, что использование полиэтилентерефталата для модификации битума позволяет повысить водостойкость материала от 0,87 до 0,97 (партии I и II), что чрезвычайно важно в условиях изменения климата, когда знакопеременные температуры продолжаются в течение продолжительных периодов. Использование пластика незначительно сказывается на прочностных показателях материала, но практически во всех приведенных в таблицах данных видно существенное превышение этих показателей требованиям ГОСТ.

Данные таблицы 2 показывают снижение длительной водостойкости асфальтобетона, полученного с использованием щебня. Это свидетельствует о том, что адгезия связующего минеральному порошку выше адгезии к щебеночному материалу, а полиэтилентерефталат существенно повышает водостойкость асфальтовяжущего.

Приведенные данные свидетельствуют о возможности применения предлагаемого способа не только в отношении фосфогипса, но и с использованием традиционного минерального порошка в производстве асфальтобетона. Это расширяет сферу использования технологии, создавая дополнительные возможности для утилизации полиэтилентерефталата.

Гранулированная асфальтобетонная смесь, как указывалось выше, способна к длительному хранению (в несколько лет по имеющимся данным) в холодном состоянии с сохранением эксплуатационных показателей. Использование охлажденной смеси при укладке в дорожное полотно связано с предварительным разогревом материала. В ходе испытаний была обнаружена неожиданная зависимость свойств асфальтобетона из гранулированной асфальтобетонной смеси на битуме, модифицированном полиэтилентерефталатом (далее ПЭТФ) от температуры прессования образцов. Испытывались образцы асфальтобетона различного состава, полученные разогревом гранулированного материала до определенной температуры с дальнейшим прессованием по ГОСТ.

Рецептуры испытанных образцов:

I - гранулированная асфальтобетонная смесь на минеральном порошке МП-1 на битуме БНД 90/130 без добавок ПЭТФ:

гранитный щебень - 57,14 %;

минеральный порошок МП-1- 38,1 %;

связующее битум БНД 60/90 - 4,76 %.

II - гранулированная асфальтобетонная смесь на минеральном порошке МП-1 на битуме БНД 90/130 с 20 % ПЭТФ:

гранитный щебень - 55,97 %;

минеральный порошок МП-1- 37,31 %

связующее (битум + 20% ПЭТФ) - 6,72 %.

III - гранулированная асфальтобетонная смесь на фосфогипсе на битуме БНД 90/130 с 20 % ПЭТФ:

гранитный щебень - 68,73 %;

фосфогипс - 24,05 %;

связующее (битум + 20 % ПЭТФ) - 7,22 %.

Таблица 3

Температура 20°С 40°С 60°С 80°С 100°С 120°С
Партия I
Предел прочности при сжатии при температуре
20°С, МПа
3,57 4,63 5,33 5,94 6,41 6,32
Водонасыщение, % 3,72 1,86 1,7 1,4 1,95 2,14
Водостойкость при длительном водонасыщении 0,66 0,68 0,70 0,69 0,73 0,71
Партия II
Предел прочности при сжатии при температуре
20°С, МПа
4,02 4,47 5,24 5,61 6,31 6,24
Водонасыщение, % 1,82 1,66 1,35 1,22 1,37 1,52
Водостойкость при длительном водонасыщении 0,63 0,76 0,89 0,89 0,91 0,75
Партия III
Предел прочности при сжатии при температуре
20°С, МПа
3,7 3,8 3,86 4,11 4,21 4,47
Водонасыщение, % 1,86 1,86 1,86 1,84 1,85 1,88
Водостойкость при длительном водонасыщении 0,75 0,79 0,80 0,91 0,87 0,84

Приведенные в таблице 3 данные позволяют сделать следующие выводы.

1) Использование ПЭТФ в качестве модификатора битума практически не влияет на прочностные показатели асфальтобетонных смесей на минеральном порошке МП-1 (смотри партии I и II), но существенно снижает водонасыщение и повышает водостойкость асфальтобетона.

2) Для образцов асфальтобетона на модифицированном битуме в температурном интервале 80-100°С наблюдается повышение показателей водостойкости материала (партии II и III), а также прочностных показателей.

3) С учетом того, что рассмотренный эффект присутствует только в образцах на модифицированном битуме следует причина его возникновения - модификация битума пластиком.

Снижение температуры укладки асфальтобетонного покрытия в сравнении с традиционной позволяет, во-первых, сократить энергетические затраты на разогрев материала перед укладкой в дорожное полотно, а, во-вторых, исключить выделение вредных испарений при укладке материала в дорожное полотно.

Способ получения гранулированной асфальтобетонной смеси, включающий гранулирование материала методом окатывания при температуре 130-150°С минеральным порошком со связующим, представляющим смесь дорожного битума с 15-20% от массы связующего, полиэтилентерефталата, вводимого в битум при температуре плавления пластика, отличающийся тем, что асфальтовяжущее вещество, состоящее из минерального порошка и связующего, наносится на минеральные частицы диаметром 5-10 мм, содержание асфальтовяжущего в гранулах составляет 30-45% от массы смеси и укладка смеси в дорожное полотно может производиться при температуре 80-100°С.



 

Похожие патенты:

Изобретение относится к материалам, используемым в дорожно-строительной промышленности, а именно к модифицирующим композициям для полимерно-битумных вяжущих. Композиция представляет собой наносуспензию и состоит из: среды-носителя и диспергированных в ней углеродных нанотрубок в количестве 0,00005-0,005 мас.% сверх 100% от массы среды-носителя.

Изобретение относится к области дорожно-строительных и строительных материалов, а именно к устройствам для получения битумного вяжущего для асфальтобетонных смесей при устройстве покрытий автомобильных дорог, мостов и путепроводов, а также для изолирующих и кровельных материалов. Устройство включает соединенные последовательно высокоскоростной смеситель и тихоходный смеситель и гранулятор, вход которого связан с выходом высокоскоростного смесителя.
Изобретение относится к области дорожно-строительных материалов, в частности к способу получения холодной асфальтобетонной смеси из старого асфальтобетонного дорожного покрытия для использования при ремонте асфальтобетонного дорожного покрытия. Техническим результатом является упрощение изготовления холодной асфальтобетонной смеси и повышение ее физико-механических свойств.

Группа изобретений относится к области производства дорожных и строительных композиционных материалов, а именно к способу получения минерального вяжущего на основе серы. Технический результат группы изобретений - упрощение процесса получения минерального вяжущего на основе серы.
Изобретение относится к области дорожного строительства. Способ ускорения затвердевания битумосодержащего пропиточного состава на водной основе на дорожном покрытии включает следующие этапы: поверхность уложенного дорожного покрытия очищают от загрязнений, далее на поверхность дорожного покрытия наносят битумосодержащий пропиточный состав на водной основе без содержания растворителей и разравнивают тонким равномерным слоем, в период с момента нанесения указанного пропиточного состава и до его полного высыхания поверх пропиточного состава распыляют водный раствор, содержащий в своем составе CaCl2, который вызывает стремительную полимеризацию пропиточного состава.

Изобретение относится к строительным составам, конкретно - к порошкам для асфальтобетонной смеси, и может найти применение в дорожном строительстве. Технический результат заключается в повышении эксплуатационных свойств дорожного покрытия: водостойкости, износостойкости, адсорбционной активности и низкой себестоимости, а также могут более эффективно заменить известные минеральные порошки.

Изобретение относится к материалам, используемым в дорожном, аэродромном и гражданском строительстве, а именно к полимерно-битумному вяжущему для дорожного и аэродромного покрытия, которое может быть использовано для производства органоминеральных смесей, в частности асфальтобетона. Полимерно-битумное вяжущее содержит битум, полимер класса термоэластопластов - блок-сополимер бутадиена и стирола (СБС) в количестве 3,15-3,5 мас.%, пластификатор, в качестве которого используют Унипласт, в количестве 1,5 мас.% и тонкодисперсную добавку, в качестве которой используют шунгит, в количестве 3-5 мас.%, где битум – остальное.
Изобретение относится к области дорожно-строительных смесей, в частности к получению современного материала для дорожного покрытия с улучшенными физико-механическими свойствами. Смесь включает следующие компоненты.
Изобретение относится к области строительства, в частности к способу изготовления модифицированного битумного вяжущего, композиции битумного вяжущего и применению прокаленного мелкодисперсного кокса при изготовлении асфальтобетонных смесей, применяемых для дорожных покрытий, рулонных кровельных и мембранных технологий для защиты зданий и мостов.
Изобретение относится к дорожно-строительным материалам, в частности к композиционным вяжущим составам на основе органических соединений для приготовления асфальтобетонных смесей, использующихся при строительстве и ремонте автомобильных дорог, мостов и аэродромов, а именно к резино-полимерно-битумному вяжущему и способам его получения.
Изобретение относится к области дорожно-строительных материалов, в частности к способу получения холодной асфальтобетонной смеси из старого асфальтобетонного дорожного покрытия для использования при ремонте асфальтобетонного дорожного покрытия. Техническим результатом является упрощение изготовления холодной асфальтобетонной смеси и повышение ее физико-механических свойств.
Наверх