Способ лазерного отжига неметаллических материалов



Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
C21D1/09 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2763362:

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») (RU)

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим зеркалом исходный лазерный импульс делят на два импульса и осуществляют временную задержку второго импульса на время действия первого импульса. Плотность мощности в первом импульсе составляет 70% от плотности мощности первоначального лазерного импульса. Техническим результатом изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала. 3 ил., 1 пр.

 

Изобретение относится к технологическим процессам и может быть использовано для лазерного отжига полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, заключающийся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению

, (1)

где Tf - температура отжига;

T0 - начальная температура;

с и ρ - удельная теплоемкость и плотность материала соответственно;

R - коэффициент отражения материала;

χ - показатель поглощения материала на длине волны лазерного излучения.

Бакеев А. А., Соболев А. П., Яковлев В. И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. - ПМТФ. - 1982 - № 6. - С. 92-98. Недостатком способа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Известен также способ лазерного отжига неметаллических материалов, заключающийся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению (1), при этом диэлектрическим зеркалом с коэффициентом отражения 50 % исходный лазерный импульс делят на два импульса равной мощности и осуществляют временную задержку второго импульса на время действия первого импульса. Патент РФ № 2633860, МПК B23K 26/402, 18.10.2017. При этом временная форма лазерного импульса, воздействующего на поверхность обрабатываемого материала, будет описываться уравнением

, (2)

где q - плотность мощности в исходном лазерном импульсе;

t - текущее время от начала воздействия;

τ - длительность исходного лазерного импульса.

Недостатком способа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Известен также способ лазерного отжига неметаллических материалов, включающий облучение поверхности материала лазерным импульсом прямоугольной временной формы с плотностью энергии, которую определяют по уравнению (1), при этом исходный лазерный импульс делят на два импульса посредством диэлектрического зеркала с коэффициентом отражения 40% и осуществляют временную задержку отраженного импульса на время воздействия на материал прошедшего через диэлектрическое зеркало лазерного импульса. Патент РФ № 2692004, МПК B23K26/402, B23K26/53, 19.06.2019. Данное техническое решение принято в качестве прототипа.

При этом временная форма воздействующего на материал лазерного импульса будет описываться уравнением

. (3)

Недостатком прототипа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Техническим результатом предполагаемого изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала.

Технический результат достигается тем, что в способе лазерного отжига неметаллических материалов, заключающемся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению

,

где Tf - температура отжига;

T0 - начальная температура;

с и ρ - удельная теплоемкость и плотность материала соответственно;

R - коэффициент отражения материала;

χ - показатель поглощения материала на длине волны лазерного излучения,

при этом диэлектрическим зеркалом исходный лазерный импульс делят на два импульса и осуществляют временную задержку второго импульса на время действия первого импульса, разделяют исходный лазерный импульс посредством диэлектрического зеркала с коэффициентом отражения 30 %, и при этом плотность мощности первого импульса устанавливают 70 % от плотности мощности исходного лазерного импульса.

Ниже приводится более подробное описание способа лазерного отжига неметаллических материалов со ссылкой на фиг. 1-3.

На фиг. 1 представлена установка для лазерной обработки, позволяющая реализовать заявленный способ: 1 - лазер с модулятором добротности на основе акустооптического затвора, 2 - диэлектрическое зеркало с коэффициентом отражения 30%, 3 - диэлектрическое зеркало с коэффициентом отражения 99,9 %, 4 - обрабатываемый материал, 5 и 6 - фокусирующие линзы, создающие на поверхности обрабатываемого материала 4 требуемую плотность энергии. Диэлектрическим зеркалом 2 лазерный импульс делится на два импульса с плотностью мощности 0,7q и 0,3q (q - плотность мощности лазерного излучения в исходном импульсе). Прошедший через зеркало 2 первый импульс с плотностью мощности 0,7q линзой 5 фокусируется на поверхность обрабатываемого материала 4 в пятно требуемого диаметра. Отраженный зеркалом 2 второй импульс с плотностью мощности 0,3q направляют на диэлектрическое зеркало 3 с коэффициентом отражения 99,9%, которое совмещает отраженный импульс на поверхности обрабатываемого материала 4 с импульсом, прошедшим через зеркало 2. Линзой 6 второй импульс фокусируется в пятно требуемого диаметра. Разница длин путей первого и второго лазерных импульсов обеспечивает задержку второго импульса на время воздействия первого импульса на поверхность обрабатываемого материала. В результате на поверхность обрабатываемого материала воздействует лазерный импульс, временная форма которого описывается уравнением:

. (4)

Сравним воздействие на поверхность обрабатываемого материала двух лазерных импульсов равной плотности энергии, временная форма которых описывается уравнениями (3) и (4).

В соответствии с [Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. - 1982. - № 6. - С. 92-98], максимальные растягивающие напряжения в поглощающем слое материала рассчитывают по уравнению:

, (5)

где - максимальные растягивающие напряжения в поглощающем слое материала;

K - модуль всестороннего сжатия;

α - коэффициент линейного расширения материала;

е - основание натурального логарифма;

sh(χx) - функция «гиперболический синус»;

χ - показатель поглощения материала на длине волны лазерного излучения;

х - координата, отсчитываемая от поверхности материала вглубь;

с0 - скорость звука в материале;

τ - длительность лазерного импульса.

Подставив уравнения (3) и (4) в (5) и выполнив интегрирования получим уравнения для расчета максимальных растягивающих напряжений в поглощающем слое обрабатываемого материала:

; (6)

, (7)

где - максимальные растягивающие напряжения в поглощающем слое материала при воздействии лазерного импульса с временной формой, описываемой уравнением (3);

- максимальные растягивающие напряжения в поглощающем слое материала при воздействии лазерного импульса с временной формой, описываемой уравнением (4).

Разделив (7) на (6) и проведя математические преобразования, получим

. (8)

На фиг. 2 приведен график зависимости , построенный по соотношению (8). Видно, что отношение . Причем по мере возрастания параметра отношение уменьшается и стремится к 0,75. Это доказывает, что лазерный импульс, описываемый уравнением (4), создает в материале максимальные растягивающие напряжения меньше, чем лазерный импульс, описываемый уравнением (3).

Из уравнений (6) и (7) определим плотность энергии лазерного излучения, вызывающую откольное разрушение материала со стороны облучаемой поверхности для воздействия лазерных импульсов, описываемых уравнениями (3) и (4) соответственно:

; (9)

, (10)

где σР - предел прочности материала на разрыв.

Уравнения (9) и (10) получены для минимальных значений плотностей энергии, когда .

Плотность энергии лазерного излучения, необходимую для достижения поверхностью материала температуры отжига, определяют по уравнению (1). Разделив (9) и (10) соответственно на (1), получим:

; (11)

. (12)

Поставив условие и , после математических преобразований получим:

; (13)

. (14)

Проведем анализ неравенств (13) и (14). Левые части неравенств является характеристикой материала, показывающей отношение предела прочности материала на разрыв к максимальным растягивающим напряжениям, возникающим при импульсном нагреве материала до температуры отжига. Правые части неравенств (13) и (14) являются функциями безразмерного параметра и зависят от временной формы лазерного импульса. Если неравенства (13) и (14) выполняются, то возможен лазерный отжиг материала. В противном случае произойдет откольное разрушение материала. Анализ неравенств (13) и (14) необходимо проводить для конкретных материалов. Например, для стекла СЗС-21, у которого К=4⋅1010 Па, α=8,6⋅10-6 К-1, σР = 6⋅107 Па, Тf = 700 K, Т0 = 300 К, левая часть неравенств (13) и (14) равна 29. Показатель поглощения стекла СЗС-21 на длине волны 1,06 мкм составляет 22,4 см-1, скорость звука в материале - 5,7⋅103 м/с.

На фиг. 3 приведено графическое решение неравенств (13) и (14) для цветного оптического стекла СЗС-21. Видно, что при воздействии лазерного импульса, временная форма которого описывается уравнением (3), неравенство (13) выполняется при ≥ 1,4, что соответствует длительности лазерного импульса τ ≥ 1,1⋅10-7 с. Неравенство (14) для лазерного импульса, временная форма которого описывается уравнением (4), выполняется при ≥ 1,25, что соответствует длительности лазерного импульса τ≥0,98⋅10-7 с.

Таким образом, предложенное техническое решение позволяет уменьшить максимальные растягивающие напряжения примерно на 20-25 % и область изменения безразмерного параметра , в которой возможно откольное разрушение материала, что позволит увеличить выход годной продукции при лазерном отжиге неметаллических материалов.

Пример реализации способа.

Необходимо произвести лазерный отжиг поверхности оптического цветного стекла СЗС-21 импульсным лазером с длиной волны 1,06 мкм и длительностью импульса 100 нс. Требуемая плотность энергии на поверхности материала составляет 35,3 Дж/см2. Расчет проведен при R=0,04, с = 0,76⋅103 Дж/(кг⋅К) и ρ = 2,5⋅103 кг/м3 по уравнению (1). При этом плотность энергии, вызывающая откольное разрушение материала со стороны облучаемой поверхности лазерным импульсом, описываемым уравнением (3) составит 32 Дж/см2. Расчеты проведены по уравнению (9). Следовательно, лазерный отжиг не возможен, так как произойдет разрушение материала. Разделим исходный лазерный импульс с помощью диэлектрического зеркала (2) с коэффициентом отражения 30% на два импульса с плотностью мощности 70 % и 30 %. Лазерный импульс с плотностью мощности 70 % от исходного воздействует на обрабатываемый материал. При этом фокусирующая линза (5) создает требуемую плотность энергии на поверхности обрабатываемого материала. Отраженный зеркалом (2) лазерный импульс с плотностью мощности 30 % от исходной диэлектрическим зеркалом (3) с коэффициентом отражения 99,9% направляется на обрабатываемый материал. Собирающей линзой (6) осуществляется повышение плотности мощности в импульсе до требуемой. При этом за счет дополнительного пути происходит задержка второго импульса на время действия первого импульса. Плотность энергии, вызывающая откольное разрушение материала в этом случае составит 37 Дж/см2. Следовательно, можно осуществлять лазерный отжиг материала. Расчеты проведены по уравнению (10).

Как правило, лазеры с модуляцией добротности акустооптическими затворами работают в частотном режиме. Частота повторения импульсов составляет 1-8 кГц. Это позволяет производить лазерный отжиг поверхностей большой площади за счет перемещения заготовки после каждого импульса на требуемое расстояние.

Способ лазерного отжига неметаллических материалов, включающий облучение поверхности неметаллического материала лазерным импульсом прямоугольной временной формы с плотностью энергии Wf, которую определяют по следующему соотношению

,

где

Tf – температура отжига, K; T0 – начальная температура, K; с – удельная теплоемкость, Дж/(кг·К); ρ - плотность материала, кг/м3; R – коэффициент отражения материала; χ – показатель поглощения материала на длине волны лазерного излучения, см-1, при этом исходный лазерный импульс делят на два импульса посредством диэлектрического зеркала и осуществляют временную задержку второго импульса на время действия первого импульса, отличающийся тем, что плотность мощности в первом импульсе устанавливают равной 70 % от плотности мощности исходного лазерного импульса.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к стали для ковки механических деталей транспортного средства или двигателя. Сталь содержит следующие элементы, в мас.%: 0,15≤С≤0,22, 1,6≤Mn≤2,2, 0,6≤Si≤1, 1≤Сr≤1,5, 0,01≤Ni≤1, 0≤S≤0,06, 0≤P≤0,02, 0≤N≤0,013, при необходимости по меньшей мере один элемент, выбранный из группы: 0≤Al≤0,06, 0,03≤Mo≤0,1, 0≤Сu≤0,5, 0,01≤Nb≤0,15, 0,01≤Ti≤0,03, 0≤V≤0,08 и 0,0015≤B≤0,004, остальное - железо и неизбежные примеси.

Изобретение относится к металлургии, конкретно к продукции из листовой анизотропной электротехнической стали, преимущественно, с ориентированной зеренной структурой, которая может быть использована для изготовления различного типа магнитопроводов, в том числе сердечников трансформаторов и других электрических машин.

Изобретение относится к способу термической обработки участка (18) стальной заготовки (1), причем указанная стальная заготовка (1) имеет микроструктуру, содержащую 5% мартенсита, выраженных в процентах площади, феррит, бейнит и остаточный аустенит, и имеет металлическое покрытие (14) на цинковой основе на по меньшей мере участке верхней поверхности (2) и/или нижней поверхности (4).
Изобретение относится к области термомеханической обработки горячекатаного и калиброванного проката из конструкционной легированной стали перлитного класса и может быть использовано для изготовления из него крепежных (болты, гайки) и метизных изделий (стремянки, тяги и т.д.) для автомобилей, тракторов и различной спецтехники.

Изобретение относится к области коммунального хозяйства, сельскохозяйственного производства и энергетики, в частности к устройствам для паротермальной карбонизации биомассы с целью получения биочара. Предложен реактор для паротермальной карбонизации биомассы в кипящем слое, содержащий цилиндрический вертикальный корпус, газораспределительную решетку, узел ввода исходного мелкодисперсного сырья и узел вывода обработанного материала, отличающийся тем, что с целью повышения однородности обработки мелкодисперсного материала при одновременном уменьшении габаритов и массы реактора упомянутые вертикальные вставки, обеспечивающие петлеобразное движение мелкодисперсного материала, установлены в зазорах между вертикальными перегородками перпендикулярно им, а сами вертикальные перегородки в свою очередь установлены по хордам поперечного сечения цилиндрического реактора, причем каждая вертикальная перегородка опирается на газораспределительную решетку и имеет в своей нижней части в пространстве между вертикальной стенкой реактора и последней по ходу движения мелкодисперсного материала вертикальной вставкой, примыкающей к данной перегородке, отверстие для выхода мелкодисперсного материала.

Изобретение относится к машиностроению и может быть использовано при создании изделий из конструкционной стали перлитного класса, выполненных с антикоррозионным покрытием на фасонной поверхности и работающих в агрессивной среде. Способ формирования антикоррозионного покрытия на изделии с фасонной поверхностью, выполненном из конструкционной стали перлитного класса, включает предварительное изготовление заготовки покрытия из коррозионно-стойкой стали аустенитного класса, которую размещают на поверхности изделия, и выполняют сварное соединение между заготовкой покрытия и изделием.
Изобретение относится к области металлургии, а именно к получению заготовок из низкоуглеродистой мартенситной стали, содержащей 0,12-0,27 мас.% углерода. Заготовку выплавляют из стали, в состав компонентов которой включены 0,1-0,5 мас.% кремния, 1,8-2,6 мас.% марганца, 2,1-2,8 мас.% хрома, 1,0-1,6 мас.% никеля, до 0,15 мас.% ванадия и до 0,15 мас.% ниобия.

Изобретение относится к способам закалки элементов конического резьбового соединения источником лазерного излучения путем вращения элемента с одновременным перемещением оптической оси источника лазерного излучения вдоль профиля резьбы на величину шага резьбы за один оборот элемента. Способ включает: перемещение источника лазерного излучения производят параллельно образующей 11 конуса резьбы, увеличивая или уменьшая частоту вращения элемента пропорционально изменению текущего диаметра конуса резьбы соответственно относительно диаметра его большого 12, 13 или меньшего 14, 15 основания.

Изобретение относится к металлургии, а именно к стальной подложке с нанесенным покрытием. Стальная подложка с нанесенным покрытием содержит покрытие, содержащее чешуйки нанографита с поперечным размером 1-60 мкм, и связующее, включающее силикат натрия и добавку в виде оксида алюминия, или связующее, включающее сульфат алюминия и добавку в виде оксида алюминия, при этом стальная подложка имеет следующий состав, в мас.
Изобретение относится к cпособу комбинированной обработки изделия из быстрорежущей стали. Способ включает нагрев изделия до температуры 950οС, последующую закалку, обработку холодом при температуре -70-80οС и последующее ионное азотирование, отличающийся тем, что ионное азотирование осуществляют с выдержкой 5-6 ч при температуре 400-600οС.

Изобретение относится к области нагревательного термического оборудования и может быть использовано для нагрева при термической обработке изделий из стекла и хрусталя. Технический результат - повышение качества производства изделий из стекла и хрусталя любой сложной формы.
Наверх