Способ изготовления прессованных упрочненных деталей из химически активного материала

Изобретение относится к порошковой металлургии, в частности к изготовлению изделий из химически активного порошкового материала. Может использоваться для получения материалов с радиационнозащитными или нейтроннозащитными свойствами. Для получения прессованных деталей в качестве химически активного материала используют порошкообразный гидрид лития природного изотопного состава. Формование деталей заданного профиля проводят прессованием при удельной нагрузке не менее 3 т/см2 при комнатной температуре. Детали размещают в вакуумируемый до 140-170 Па герметичный контейнер и проводят термообработку путем подъема температуры до 500-600°С со скоростью нагрева не более 10°С/мин. Процесс термообработки ведут в течение 1-5 часов с последующим охлаждением и выдержкой в контейнере в течение не менее 3 часов, при этом поддерживают заданную степень разряжения в герметичном контейнере в пределах 140-170 Па. Обеспечивается улучшение эксплуатационных характеристик, а именно механической прочности при сжатии, стабилизация химического состава, а также обеспечение условий для повышения адгезии защитного покрытия, наносимого на детали перед эксплуатацией в условиях воздействия агрессивных факторов среды. 1 з.п. ф-лы, 5 ил., 3 пр.

 

Изобретение относится к области технологий получения материалов с радиационнозащитными или нейтроннозащитными свойствами и может быть использовано для изготовления деталей из химически активного материала с улучшенными эксплуатационными характеристиками.

Актуальность решаемой проблемы основана на необходимости получения деталей из химически активного материала (например, гидрида лития) с улучшенными эксплуатационными характеристиками (механическая прочность при сжатии, стабильность химического состава, совместимость с защитным покрытием).

Из уровня техники известен способ изготовления радиационнозащитных деталей (патент РФ №2499322, публ. 20.11.13 г., МПК H01J 45/00), включающий изготовление герметизирующей оболочки космической ядерной энергетической установки на основе гидрида лития.

Однако в известном способе детали из материала в виде гидрида лития выполняют функцию только герметизации, в связи с чем в способе изготовления не предусмотрены условия обеспечения высокой механической прочности изделий.

Известен способ получения нейтроннозашитного термостойкого материала на основе гидрида титана (патент РФ №02522580, публ. 20.07.14 г., МПК G21F 1/00), согласно которому компоненты формуемой смеси перемешивают до однородного состояния, заливают в формы и отверждают, после чего формуемую смесь подвергают термообработке при 300°С.

Известен в качестве прототипа заявляемого способ изготовления радиационной защиты с гидридом лития (патент РФ №2137225, МПК G21C 11/02, публ. 10.09.1099 г.). включающий изготовление деталей заданного профиля из химически активного материала (гидрида лития) и диспергиризованного в него тяжелого компонента (порошка вольфрама) в виде отвержденного монолита, термообработку при 450-550°С, в результате которого получают материал с улучшенными радиавдоннозащитными свойствами и повышенной массогабаритной характеристикой многокомпонентной радиационной защиты.

К недостаткам известного способа относятся сложность состава материала и способа его изготовления, а также отсутствие условий и средств, предусмотренных для повышения прочностных свойств по сжатию и для уменьшения газообразования при эксплуатации готовых изделий в условиях воздействия агрессивных факторов среды.

Задачей авторов изобретения является разработка способа изготовления прессованных упрочненных деталей из химически активного материала.

Технический результат при использовании предлагаемого способа заключается в улучшении эксплуатационных характеристик, а именно стабильности химического состава, механической прочности при сжатии по сравнению с прототипом, а также обеспечение условий для повышения адгезии защитного покрытия, наносимого перед эксплуатацией в условиях воздействия агрессивных факторов среды.

Указанные решение технической проблемы и новый технический результат обеспечиваются тем, что в отличие от известного способа изготовления деталей из химически активного материала, включающего предварительное получение формованием изделий из химически активного материала, термическую обработку полученных изделий, согласно предлагаемому способу для получения прессованных упрочненных деталей из химически активного материала (например, гидрида лития) предварительно берут порошкообразный химически активный материал в виде гидрида лития природного изотопного состава, проводят формование деталей заданного профиля прессованием при удельной нагрузке прессования не менее 3 т/см2 при комнатной температуре, затем ведут последующую термообработку прессованных деталей при помещении их в герметичный контейнер, который вакуумируют до давления 140-170 Па и ведут подъем температуры до 500-600°С со скоростью нагрева не более 10°С/мин. Процесс термообработки ведут в течение 1-5 часов с последующим охлаждением и выдержкой в контейнере в течение не менее 3 часов, при этом поддерживают заданную степень разряжения в герметичном контейнере в пределах 140-170 Па.

Предлагаемый способ упрочнения прессованных деталей из химически активного материала поясняется следующим образом.

Первоначально берут порошковый химически активный материал -гидрид лития природного изотопного состава.

Из химически активного материала - гидрида лития природного изотопного состава прессуют деталь заданного профиля давлением не менее 3 т/см2 при комнатной температуре, а затем прессованные детали подвергают термообработке, помещая детали в герметичный контейнер, который вакуумируют до степени разряжения 140-170 Па, и осуществляют подъем температуры со скоростью не более 10°С/мин до 500-600°С; в ходе последующей трехчасовой выдержки и естественного охлаждения поддерживают заданную степень разрежения в герметичном контейнере на уровне 140-170 Па.

Такой режим термообработки, как это подтверждено экспериментально, обеспечивает стабилизацию связей между центрами кристаллической решетки химически активного материала готовых деталей, что в конечном итоге приводит к повышению механической прочности на сжатие, обеспечение которой критично для таких изделий, эксплуатируемых в условиях воздействия силовых нагрузок, атмосферы и температур.

Как вариант, герметичный контейнер с деталью перед термообработкой вакуумируют, затем заполняют инертной средой, предпочтительно в виде газообразного аргона, нагрев и выдержку ведут в среде аргона.

Контейнер с деталью перед термообработкой вакуумируют, затем заполняют аргоном с абсолютной влажностью не более 0,2 г/м3. Нагрев, выдержку в течение 1-5 часов и естественное охлаждение ведут в среде аргона.

Экспериментально было подтверждены достижение стабильности химического состава материала деталей, повышение механической прочности и совместимость с защитным покрытием, при сочетании условий прессования и термообработки. Также показано, что при использовании в качестве инертной среды именно аргона, исключается риск воздействия агрессивных факторов среды - влаги и воздуха, при взаимодействии с которыми могут образоваться продукты (газообразный водород, гидроокись лития и оксид лития), которые при эксплуатации деталей из химически активного материала с нанесенным защитным лакокрасочным покрытием в условиях воздействия температур и других агрессивных факторов могут негативно сказаться на адгезии защитных покрытий к поверхности деталей.

На фиг. 1 представлена общая схема устройства для реализации предлагаемого способа. В герметичном контейнере 5 размещены:

1 - термопара КТХА; 2 - датчик абсолютного давления; 3 - печь; 4 -кран для отбора газовых проб; 6 - деталь из химически активного материала.

Предлагаемый способ осуществляли с использованием устройства для проведения термообработки (фиг. 1), которое помещено в полость печи 3, режим давлений и температурный режим контролировался посредством датчика давления 2, термопары 1. В полости контейнера 5 размещали детали 6 из химически активного материала. Для отбора газовых проб и контроля их содержания предусмотрен кран 4.

На фиг. 2, 4 представлены фото, где показаны вид поверхности деталей из химически активного материала, иллюстрирующего состояние поверхности без термообработки с последующим нанесением защитного лакового покрытия.

На фиг. 3, 5 - фото поверхности деталей из химически активного материала с термообработкой с последующим нанесением защитного лакового покрытия. Из представленных иллюстраций видно, что при использовании термообработки, предусмотренной заявляемым способом, обеспечивается технический результат, заключающийся в снижение риска появления вздутий и дефектов на поверхности деталей, что положительно будет сказываться на адгезии наносимых защитных лаковых покрытий к химически активному материалу деталей - гидриду лития.

Таким образом, при использовании предлагаемого способа обеспечивается более высокий по сравнению с прототипом результат, заключающийся в улучшении эксплуатационных характеристик, а именно, увеличении механической прочности, снижении газовыделения и обеспечение условий высокой адгезии защитного лакокрасочного покрытия, наносимого на детали из химически активного материала - гидрида лития.

Возможность промышленной реализации предлагаемого изобретения подтверждается следующими примерами конкретного выполнения.

Пример 1. В лабораторных условиях был опробован предлагаемый способ при выполнении следующих условий с использованием необходимых оборудования и материалов.

Первоначально детали из химически активного материала (гидрида лития природного изотопного состава) изготавливали методом холодного прессования в размер. Прессование осуществляли в специальных формах при удельной нагрузке прессования 3 т/см2 и температуре в помещении (20±5)°С. Взятие навески материала осуществляли в атмосфере аргона с абсолютной влажностью не более 0,2 г/м3; засыпку навески, прессование, распрессовку, определение масс-геометрических параметров проводили в атмосфере воздуха при относительной влажности не более 70% с минимальным временем нахождения детали во влажной среде.

Деталь из химически активного материала цилиндрической формы диаметром ~ 60 мм и высотой ~ 50 мм, массой ~ 108 г размещали в контейнере 5, который вакуумировали до давления 140-170 Па, измеряемого датчиком 2, затем заполняли аргоном с абсолютной влажностью не более 0,2 г/м3. Вели подъем температуры в печи (фиг. 1, п. 3) со скоростью 10°С/мин до 600°С, далее следовала трехчасовая выдержка и естественное охлаждение контейнера с контролем температуры с помощью термопары 1.

После охлаждения и стабилизации температуры фиксировали давление газа в контейнере 5, отбирали пробу посредством подключения крана 4 к герметичной колбе и анализировали состав газовой среды методом адсорбционной газовой хроматографии.

Эффект заключался в следующем:

При повторном нагреве до 600°С удельное (на площадь поверхности) выделение водорода из детали уменьшалось в пять раз - от 0,91⋅10-4 до 0,17⋅10-4 моль/см2, удельное (по массе) выделение водорода - от 1,28-10 до 0,24⋅10-4 моль/г по сравнению с первичным нагревом. Следовательно, при эксплуатации деталей, прошедших термическую обработку, в интервале температур (20…600)°С газовыделение уменьшается в пять и более раз, т.к. химический состав материала при отжиге стабилизируется, а именно, существенно снижается содержание примесного гидроксида лития, который при повышении температуры реагирует с гидридом лития с выделением водорода.

Пример 2. Детали цилиндрической формы диаметром ~ 20 мм и высотой ~ 20 мм, массой ~ 5 г из гидрида лития природного изотопного состава изготавливали по технологии, приведенной в примере 1.

Детали размещали в контейнере (фиг. 1), который вакуумировали до давления 140-170 Па. Две группы деталей поочередно нагревали со скоростью 10°С/мин до 500 и 600°С соответственно, далее следовала выдержка 3,5 ч и естественное охлаждение контейнера. После охлаждения детали извлекали и испытывали на сжатие.

Предел прочности при сжатии деталей, прошедших термообработку при 500 и 600°С, увеличился на 37% и 57%, условный предел текучести снизился на 41% и 28%, относительная остаточная деформация увеличилась в 11,5 и 11,7 раз соответственно.

Пример 3. Детали цилиндрической формы диаметром ~ 35 мм и высотой ~ 25 мм, массой ~ 18,5 г из гидрида лития природного изотопного состава изготавливали по технологии, приведенной в примере 1.

Детали размещали в контейнере (фиг. 1), который вакуумировали до давления 140-170 Па. Контейнер нагревали со скоростью 10°С/мин до 500°С, далее следовала выдержка 3,5 ч и естественное охлаждение.

На охлажденные детали методом пневматического распыления наносили лаковое покрытие на основе алкидно-уретанового лака. При этом на деталях, подвергшихся термической обработке, получали бездефектное сплошное покрытие (фиг. 3, 5).

Таким образом, как это показали примеры реализации заявляемого способа, при использовании всех условий и материалов, обеспечивается более высокий технический результат по сравнению с прототипом, а именно: повышение механической прочности при сжатии, стабилизация химического состава, а также обеспечение условий для повышения адгезии защитного покрытия, наносимого на детали из химически активного материала (гидрида лития).

1. Способ изготовления прессованных упрочненных деталей из химически активного материала, включающий предварительное получение формованием изделий из химически активного материала, термическую обработку полученных изделий, отличающийся тем, что в качестве химически активного материала используют порошкообразный гидрид лития природного изотопного состава, проводят формование деталей заданного профиля прессованием при удельной нагрузке прессования не менее 3 т/см2 при комнатной температуре, затем ведут последующую термообработку прессованных деталей при помещении их в вакуумированный до 140-170 Па герметичный контейнер, причем подъем температуры до 500-550°С ведут со скоростью нагрева не более 10°С/мин, процесс термообработки осуществляют в течение 1-5 часов с последующим охлаждением и выдержкой их в контейнере в течение не менее 3 часов, при этом поддерживают заданную степень разряжения в герметичном контейнере в пределах 140-170 Па.

2. Способ по п. 1, отличающийся тем, что герметичный контейнер с деталью перед термообработкой вакуумируют, затем заполняют аргоном абсолютной влажности не более 0,2 г/см3, нагрев и выдержку деталей из химически активного материала ведут в среде аргона.



 

Похожие патенты:

Изобретение относится к получению частиц природного графита для анодов литий-ионных аккумуляторов. Способ получения сферического графита на основе природного графита включает разрушение, окатывание и истирание частиц графита.

Изобретение относится к способу химической обработки анодов металл-ионных аккумуляторов на основе активного материала неграфитизируемого углерода с целью их насыщения щелочными металлами, такими как калий, более конкретно, анодов для калий-ионных аккумуляторов. Осуществление химической обработки для прекалирования углеродных анодов включает изготовление раствора, содержащего калий, нафталин и органический растворитель.

Настоящее изобретение относится к электроактивному полимеру формулы: ,включающему в себя основную поли(салицилидениминато)никелевую цепь и заместители X, Y и Z, n=2-5, где заместители X и Z описываются структурной формулой: , а заместитель Y представляет -СН2-СН2-, или заместители X и Z представляют -СН3, а заместитель Y описывается структурной формулой или -СН2-СН2-.

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно − к натрий-ионному аккумулятору. Предлагается анод натрий-ионного аккумулятора с повышенной плотностью емкости, причем его активный слой состоит из нановолокон германия, нанесённых на титановую подложку катодным осаждением из водного раствора.
Изобретение относится к технологии производства оксида лития для получения чистых растворов гидроксида лития, либо для получения стекол, стеклокерамики или кристаллической керамики, например литиево-ионной проводящей керамики. Оксид лития получают из карбоната лития и элементарного углерода или углеродного источника, который дает элементарный углерод, при температуре в диапазоне от 720°C до 1200°C, при этом реакцию осуществляют при практически полном исключении кислорода в одном или более резервуарах, имеющих контактирующие с продуктом поверхности, выбранные из группы, состоящей из стеклоуглерода, алюмината лития, покрытой углеродом керамики, С-покрытого кварцевого стекла и тантала.

Изобретение относится к материалам литий-ионных аккумуляторов с высокой удельной энергией. Элементарная ячейка аккумулятора состоит из токосъемников, анода, катода, электролита и изолятора.

Изобретение относится к неорганической химии, в частности к области получения порошка литированного оксида кобальта (LiCoO2), используемого в качестве катодного материала для литий–ионных аккумуляторов. В способе получения литированного оксида кобальта, включающем смешивание исходных компонентов солей лития, оксида кобальта и добавок, отжиг в печи в две стадии, после первой стадии полученную шихту перемешивают и отжигают повторно с последующим охлаждением.

Изобретение относится к активному материалу положительного электрода и аккумулятору, содержащему активный материал положительного электрода. Активный материал положительного электрода имеет гранулированную форму и содержит в качестве существенного компонента сложный оксид лития и переходного металла, содержащий, по меньшей мере, марганец в качестве элемента переходного металла и имеющий слоистую структуру каменной соли.

Изобретение относится к композиции графита для суперконденсаторов (варианты). Согласно одному из вариантов композиция содержит: дегидрированный графит, содержащий множество чешуек, имеющих по меньшей мере одну чешуйку из 10 с размером свыше 10 квадратных микрометров, среднюю толщину 10 атомных слоев или менее и характерную плотность дефектов по меньшей мере 50% μ-рамановских спектров дегидрированного графита, полученных при возбуждении на длине волны 532 нм с разрешением лучше, чем 1,8 обратных сантиметров, имеющих отношение площадей D/G ниже 0,5, причем эта композиция является композитом, и по меньшей мере 30% участков sp3-гибридизованного углерода композиции являются одними или более из: a) функционализированных неводородной химической группой, b) сшитых с участками sp3-гибридизованного углерода других чешуек.

Изобретение относится к способу производства катода литий-ионного аккумулятора, в частности к способу получения частиц прекурсора без использования органических хелатирующих добавок для изменения скорости осаждения, и к частице прекурсора, полученной таким способом, а также относится к способу получения из этих частиц активных катодных частиц.

Изобретение относится к технологии электрохимических производств, а именно к разработке способа получения электродных материалов из оксида марганца со структурой бирнессита или вернадита для использования в суперконденсаторах, электрохромных устройствах, батарейках, аккумуляторах, топливных элементах.
Наверх