Резиновая смесь для манжеты пакерного устройства, разбухающая в буровом растворе "полиэмульсан"

Изобретение относится к резиновой промышленности, в частности к созданию резиновой смеси для изготовления резиновых манжет пакерных устройств, разбухающих в буровом растворе «Полиэмульсан». Резиновая смесь для изготовления резиновых манжет, разбухающих в буровом растворе «Полиэмульсан», на основе комбинации натурального каучука и бутадиеннитрильного каучука БНКС-18 содержит целевые добавки, в том числе асбест хризотиловый, диспергированный в расплаве ε-капролактама с производными п-фенилендиамина, дисперсия которого, в свою очередь, диспергирована в двойном этиленпропиленовом или тройном этиленпропилендиеновом каучуках, а в качестве вулканизующего агента - серу, при этом сера, находящаяся в пасте с дисперсионной средой, представленной эвтектическим расплавом ε-капролактама и малеиновой кислотой, заключена в капсулу с оболочкой из коллоидной кремнекислоты при следующем соотношении компонентов серной капсулы, % масс.: сера -от 22,50 до 27,50, коллоидная кремнекислота (БС-120) - 50,00, ε-капролактам - от 13,50 до 16,5, малеиновая кислота - от 9,00 до 11,00, причем серная капсула при следующем содержании основных компонентов смеси, мас.ч.: каучук БНКС-18 - 50,00, каучук натуральный - 50,00, дисперсия этиленпропиленового или этиленпропилендиенового каучука с диспергированным асбестом хризотиловым - 130,00, серная капсула - от 3,64 до 4,44. Изобретение позволяет создать резиновую смесь, обеспечивающую манжетам пакерных устройств, помещенных в полиэмульсан с температурой 8-12°С, через 10 суток набухания, увеличение диаметра не более чем на 10%, а через 60 - не менее 30% и, в большей степени, сохранить эти свойства в набухшем состоянии. 4 табл., 3 ил., 12 пр.

 

Изобретение относится к резиновой промышленности, в частности к созданию резиновой смеси для изготовления резиновых манжет пакерных устройств, разбухающих в буровом растворе «Полиэмульсан» (далее полиэмульсан).

Полиэмульсан, соответствуя сертификату № ТЕКСЕРТ RU.01-12.Н0282 - состав для приготовления буровых эмульсий, представляет собой смесь продуктов олигомеризации олефинов, минеральных дистиллятных и остаточных масел. Исходя из этого, наиболее общей характеристикой полиэмульсана является относительно невысокая его полярность, если сравнивать, например, с водными рассолами, которые требуют использования в каучуковой матрице водонабухающих полярных полимеров. Тем не менее, рецептуростроение резиновых манжет пакерного устройства, работающего в полиэмульсане, также предопределяет использование комбинации полимеров разной полярности, чтобы, во-первых, обеспечить проникновение полиэмульсана по границам раздела между полимерными фазами и, во-вторых, регулируя соотношение фаз, создать вполне определенную степень набухания, через вполне определенное время, сохраняя при этом прочностные свойства манжеты в целом на должном уровне. По сути, по этому принципу построены многие решения, запатентованные в последнее время.

Так, известен патент США (US2009/0084550 А1), в примерах которого предлагаются базовые полимеры - типичные каучуки: бутадиеннитрильный, этиленпропилендиеновый, полихлоропреновый, тетрафторэтиленпропиленовый, фторкремнийорганический, бутилкаучук или их сочетания, находящиеся в смеси с модифицированной целлюлозой и акриловым полимером. Комбинация последних двух обеспечивает набухание резиновой манжете в водном рассоле, а каучуки, оставаясь практически не набухшими, - присущие резинам эластичность, прочность и необходимую твердость. Но в полиэмульсане ни один из приведенных в патенте рецептов не обеспечивает резинам нужную степень набухания.

Такой же недостаток имеет место при использовании примеров отечественного патента (патент России 2653024). Причем в композицию из разнополярных полимеров авторы используют асбест хризотиловый (АХ). Однако, использование относительно небольшого количества АХ (в указанном патенте не более 10 мас.ч. на 100 мас.ч. каучука) не решает проблему набухания резиновой манжеты в полиэмульсане. Этого количества АХ оказывается недостаточно, чтобы его волокна с трубчатой структурой использовать как своеобразные артерии для протекания флюидов и заполнения ими как можно большего объема эластомерной матрицы. Только предварительное диспергирование с одновременным аппретированием волокон АХ, что, в свою очередь, явилось предметом изобретения, позволило довести содержание АХ в каучуке до 100 мас.ч. и более.

Поэтому наиболее близкой к заявляемой резиновой смеси является смесь, приведенная в патенте №2688769.

Тем не менее, манжета, изготовленная из этой резиновой смеси и при тех же условиях эксплуатации в полиэмульсане, набухает, все-таки недостаточно и, кроме того, утрачивает запорные функции, после того как манжета находится длительное время в набухшем состоянии.

Настоящее изобретение позволяет создать резиновую смесь, обеспечивающая манжетам пакерных устройств, помещенных в полиэмульсан с температурой 8-12°С, через 10 суток набухания, увеличение диаметра не более чем на 10%, а через 60 - не менее 30% и, в большей степени, сохранить эти свойства в набухшем состоянии.

Техническим результатом является создание резиновой смеси, изготовленная из которой манжета отвечает необходимым требованиям при эксплуатации в полиэмульсане.

Технический результат достигается посредством создания резиновой смеси для манжеты пакерного устройства, разбухающей в буровом растворе - полиэмульсан.

Резиновая смесь для изготовления резиновых манжет, разбухающих в буровом растворе - «Полиэмульсан», на основе натурального каучука, содержащая целевые добавки, в том числе асбест хризотиловый, диспергированный в расплаве ε-капролактама с производными п-фенилендиамина, дисперсия которого, в свою очередь, диспергирована в двойном этиленпропиленовом или тройном этиленпропилендиеновом каучуках, а в качестве вулканизующего агента - серу, отличающаяся тем, что сера, находящаяся в пасте с дисперсионной средой, представленной эвтектическим расплавом ε-капролактама и малеиновой кислоты, заключена в капсулу с оболочкой из коллоидной кремнекислоты при следующем соотношении компонентов серной капсулы, % мас.:

Сера 22,50-27,50
Коллоидная кремнекислота (БС-120) 50,00
ε-капролактам 13,50-16,50
Малеиновая кислота 9,00-11,00

а серная капсула вводится в комбинацию каучуков, в которой дополнительно используют бутадиеннитрильный каучук - БНКС-18, при следующем содержании основных компонентов смеси, мас.ч. на 100 мас.ч. комбинации каучуков:

Каучук БНКС-18 50,00
Каучук натуральный 50,00

Дисперсия этиленпропиленовогогокаучука

с диспергированным асбестом хризотиловым 130,00
Дисперсия этиленпропилендиеногокаучука
с диспергированным асбестом хризотиловым 130,00
Серная капсула 3,64-4,44

Следует еще раз привести методологию, изложенную в патенте №2686789, позволившую создать резиновую манжету, набухающую в полиэконоле. Ее основная часть базируется на тезисе о создании границ раздела между различными фазами эластомерной композиции, причем границ раздела, пронизывающих весь объем полимерной матрицы. В патенте №2686789 эти функции в достаточной степени выполняет асбест хризотиловый (АХ). Проблемы, связанные с непосредственным введением АХ каучука, а это, прежде всего, плохое распределение волокон АХ в матрице каучука из-за недостаточного смачивания неорганического материала углеводородными макромолекулами полимера, решаются посредством диспергирования АХ в эвтектическом расплаве ε-капролактама с производными п-фенилендиамина, в частности, с IPPD.

Использование диспергированного АХ (ДАХ) в резиновой смеси (указанной в патенте №2686789) для пакерной манжеты, находящейся в полиэмульсане, оказывается не вполне достаточным, чтобы вызвать необходимую степень набухания. Увеличение границ раздела с целью достижения максимального набухания, наряду с использованием ДАХ и разнополярных каучуков - хотя и эффективный технологический прием, способствующий достижению поставленной цели, но при этом углубляются недостатки, присущие практически всем эластомерным композициям подобного рецептуростроения, прежде всего из-за низкой совулканизации каучуков. При этом значительно ухудшаются физико-механические показатели, отвечающие за запорные функции: условная прочность при разрыве, твердость, эластичность. Поэтому в данном заявляемом решении, при использовании относительно несовместимых каучуков резиновой смеси - НК, БНКС, СКЭПТ или СКЭП, применение новой вулканизующей системы - капсулы с серой, позволяет в достаточной степени решить проблему совулканизации, обеспечивая при этом приемлемый уровень эксплуатационных свойств вулканизатам из заявляемой резиновой смеси, находящихся в контакте с полиэмульсаном, т.е. непосредственно набухшей манжете.

В серной капсуле капсулируемым веществом является сера, являясь дисперсной фазой, а эвтектический расплав ε-капролактама с малеиновой кислотой - дисперсионной средой. Оболочкой капсулы может служить любая коллоидная кремнекислота (силика) с удельной поверхностью более 100 м2/г. В результате опытов наиболее приемлемой оказалась уплотненная форма БС-120 (ГОСТ 18307-78), производитель которой ООО «Сода». Эта силика в меньшей степени пылит, доступна и не уступает по многим показателям импортным аналогам. Эвтектический расплав ε-капролактама и малеиновой кислоты (далее как ЭРКМ) взят в массовом соотношении 6:4. При 20-25°С, т.е., по сути, при комнатной температуре ЭРКМ подобен легкоподвижной жидкости. Причем на протяжении практически 3-х суток не происходит выкристаллизации ни одного из его компонентов. Это очень важная особенность, позволяющая использовать расплав не только как дисперсионную среду, которая в силу своих поверхностно активных свойств препятствует седиментации серы, но и создает расклинивающий эффект по спаям кристаллических образований серы. Это происходит во время капсулирования серной пасты.

В свою очередь, предварительно приготовленная серная паста, полученная смешением ЭРКМ с серой в массовом соотношении, соответственно 55-45, 45-55, капсулируется в шаровой мельнице силикой под действием хаотично движущихся керамических шаров.

Процесс капсулирования необходим не только для того, чтобы обеспечить потребительскую и товарную формы серной пасте, превращая ее в порошок, но и углубить процессы диспергирования серы в дисперсионной среде, представленной ε-капролактамом и малеиновой кислотой за счет действия ударных нагрузок со стороны шаров шаровой мельницы. Здесь нет, по-видимому, необходимости конкретизировать рамки технологического процесса капсулирования и вносить их в отличительную часть формулы изобретения. Их бесконечное множество и, вероятно, поэтому практически, невозможно изложить их определенной системой - это и объем мельницы, и скорость ее вращения, и конструктивные ее параметры, и материал, из которого она изготовлена, и геометрия, и масса шаров, и насыпная плотность капсулируемого материала. Поэтому можно считать, что сам факт капсулирования может явится предметом изобретения. В примерах будут указаны конкретные параметры технологического процесса капсулирования в лабораторных условиях.

После регистрации патента №2686789 на диспергированный асбест хризотиловый СКЭП-ДАХ -10 были разработаны технические условия (ТУ 22.19.9-046) и технологический регламент (ТР-015.01-2018) на его изготовление.

В ТУ и TP были внесены дополнения, касающиеся использования наряду со СКЭПом, тройного - этиленпропилендиенового каучука СКЭПТ-40. При этом в TP изменений технологического процесса при работе со СКЭПТ-40, не произошло. В одном из примеров также будет показано использование этого каучука в решении поставленных задач.

В заявляемых резиновых смесях содержание СКЭП-40-ДАХ-10, как и СКЭПТ-40-ДАХ-10, составляет 130 мас.ч. на 100 мас.ч. каучука. Это наиболее оптимальное содержание, обеспечивающее как наиболее высокую степень набухания резин в полиэмульсане, так и сравнительно удовлетворительные физико-механические показатели вулканизатов как в исходном состоянии, так и после их набухания в полиэмулсане (см. табл. 4). Минимально возможное количество серы в серной капсуле - 45%, мас. продиктовано возможностью ее седиментации в дисперсионной среде при содержании меньшем указанного количества. В таком случае, пробы капсулируемого продукта могут различаться по составу и, прежде всего, содержанием серы. Максимально возможное - 55%, мас. продиктовано значительным увеличением вязкости серной пасты, что делает практически невозможным опорожнение реактора самотеком.

Изобретение поясняется фиг. 1, на которой показана зависимость изменения высоты (t, мм) образца (образец в виде шайбы высотой 24 мм.) от времени (, сутки) набухания, где

() - кривая состава 12 (см. таб. 3)

() - кривая состава 7 (см. таб. 3)

() - в составе 12 комбинация каучуков НК и БНКС - 18 соответственно 80:20% мас. На фиг. 2 показана схема пакерной манжеты на стендовой установке, где 1 - колонна стенда; 2 - манжета; 3 - базовая труба. На фиг. 3 приведена схема пакерной манжеты в условиях заполнения флюидом пласта, где 1 - колонна стенда; 2 - манжета; 3 - базовая труба; 4 - пласт.

Оптимальное соотношение НК к бутадиеннитрильному каучуку (БНКС-18) составляет 50:50 мас.ч. Это следует, прежде всего, из представленных на фиг. 1 зависимостей степени набухания (косвенно по увеличению высоты набухшего образца от времени набухания). Именно это соотношение обеспечивает резиновым образцам более высокую скорость и степень набухания с образцами других соотношений каучуков (см. фиг. 1, кривая обозначена, как -О- для вулканизата с соотношением НК к БНКС-18 как 80:20%, мас.). Характер представленных на фиг. 1 зависимостей еще раз подтверждает тезис о необходимости создания наиболее протяженных границ раздела между фазами, и наглядный пример тому - это вулканизаты резиновой смеси на основе 80 мас.ч. НК и 20 мас.ч. БНКС-18. Хотя НК по степени набухания превалирует над БНКС-18, но только, как показано, соотношение 50:50 мас.ч., способствует наибольшему развитию границ раздела и может решить проблему скорости и степени набухания. Таким образом, прежде всего, увеличение границ раздела оказывает доминирующее влияние на скорость и степень набухания.

Здесь следует обратить внимание на поведение резинового образца содержащего серные капсулы (см. фиг. 1, кривая, обозначенная как ) В начале процесса набухания увеличение его линейных размеров несколько отстает по сравнению с образцами из резиновой смеси, структурированной только серой (см. фиг. 1). Затем, по истечении 60-ти суток пребывания образцов в полиэмульсане, степени набухания практически выравниваются. Для объяснения этого явления необходимо проследить поведение малеиновой кислоты. Малеиновая кислота является не только соагентом ε-капролактама для создания дисперсионной среды при получении серной пасты. Кислота способствует образованию энергетически неравноценных связей за счет реакции карбоксильных групп с наиболее подвижными атомами водородов макромолекул каучуков: НК, БНК-18, СКЭП и СКЭПТ. Для идентификации пространственных связей готовили смеси каучуков НК, БНКС и СКЭПТ с ЭРКМ. Смеси готовили на лабораторных вальцах 320 160/160. Также готовили смеси каучуков НК, БНКС и СКЭП. На 100 мас.ч каучуков вводили 1 мас.ч. ЭРКМ. Затем готовили толуольные растворы полученных смесей. После чего выливали растворы на целлофановую подложку, а после улетучивания растворителя и удаления набухшего в воде целлофана, снимали ИК-спектры полученных пленок на ИК-спектрометре Фурье (Nicolen-6700). В спектре нетермостатированных пленок обнаруживается полоса валентных колебаний при 3520 см-1, которую можно отнести к колебаниям, сильно связанных водородными связями с 8-капролактамом карбоксильной группы. В термостатированных - при 150°С в течение 30 мин., эта полоса практически исчезает, но появляется полоса карбонильной группы при 1630 см-1. Если полоса при 3520 см-1, см-1 вполне ожидаема, то значительное смещение полосы карбонильной группы в область низких частот (для алифатического кетона [Спектрометрическая идентификация органических соединений. - Р. Сильверстейн, Г. Басслер, Т. Морил. - Пер. с англ. - Изд. «Мир», 1977] полоса обнаруживается при 1715 см-1), как отмечают [там же] возможно за счет эффекта сопряжения.

Примеры конкретного выполнения

Пример 1

Приготовление серных капсул необходимо начать с изготовления дисперсионной среды, представленной е-капролактамом и малеиновой кислотой в массовом соотношении 6:4. Предварительное изготовление продиктовано тем, что ЭРКМ очень чувствителен к выкристализации одного из компонентов. Условием для выкристализации может быть относительно низкая температура хранения ЭРКМ. Уже через несколько часов при температуре 20°С можно наблюдать выкристаллизацию. Выкристаллизация ускоряется при хранении в металлических контейнерах из меди, олова или нержавеющей стали. Наиболее приемлема для хранения ЭРКМ фарфоровая посуда с глазированной поверхностью. В случае изготовления емкости для смешения из металлических элементов происходит комплексообразование, т.е., по сути, меняются физико-химические свойства расплава (ЭРКМ). В реактор емкостью 500 см3 одновременно загружается расчетное кол-во ε-капролактама и малеиновой кислоты общей массой 200 г. При температуре силиконовой бани 70±5°С включают фторопластовую мешалку и при ее вращении со скоростью 60 об/мин проводят смешение компонентов расплава в течение 30 мин. Реактор оставляют на хранение при температуре 20-25 С, периодически наблюдая за расплавом в течение 3-х суток и определяя при этом вязкость по Брукфильду на вискозиметре PRO-II, которая на протяжении 3-х суток хранения должна находиться в пределах 700 - 800 сПз. В таком случае и в отсутствии выкристаллизации расплав считается пригодным для приготовления серной пасты. В реактор с расплавом загружают расчетное количество (180 г - 90% мас. от массы расплава или 22,5% мас. от массы капсулы) серы производства ООО «КаспийГаз». При вращении фторопластовой мешалки со скоростью 60 об/мин при температуре 20-25°С, механическую смесь доводят до консистенции пасты с вязкостью по Брукфильду 4200-4900 сПз, на что требуется 30-35 мин. Серную пасту из реактора выливают в керамическую шаровую мельницу 3 дм3. В мельницу, также, загружают навеску БС-120 массой 380 г (50% от массы пасты) и около 1400 г. керамических шаров, каждый из которых 018 мм. Приводят во вращение мельницу и через каждые 15 мин. контролируют процесс капсулирования по значению насыпной плотности (р). После 40 мин. работы мельницы р практически не меняется и составляет 0,42 г/см. Готовый продукт - серные капсулы (SK 22,5) выгружают и направляют на участок приготовления резиновых смесей.

Примеры 2 и 3.

Отличаются от примера 1 тем, что количество серы в примере 2 по отношению к расплаву составляет 100% мас. (в составе капсулы - 25% мас.): в примере 3 - 110 % мас. (в составе капсулы 27,5% мас.). Вязкость серных паст, изготовленных по примеру 2 и 3 (SK-25 и SK 27,5) - соответственно 5100-5400 и 6700 и 7200 сПз, а насыпная плотность 0,44 и 0,47 г/см. Серная паста, изготовленная по примеру 3, в силу своей большей вязкости, требует больших затрат при выгрузке из реактора и относительно большее время при формировании капсул - 30-40 мин.

Пример 4

Проводят диспергирование АХ марки А6К30 (6-сорт) в присутствии эвтектического расплава (ЭР) ε - капролактама с N-изопропил-N'-фенил-п-фенилендиамином (IPPD) или - ε - капролактама с N-1,3-диметилбутил-N'-фенил-п-фенилендиамином в соответствие с ТР-015.01-2018. Практически, такую же информацию о процессе диспергирования можно получить в примерах патента №2686789. Полученный продукт под маркой ДАХ-10 отправляется на участок приготовления резиновых смесей.

Пример 5

Пример рассматривает диспергирование ДАХ-10 в тройном-этиленпропилендиеновом каучуке марки СКЭПТ-40. Процесс диспергирования ДАХ-10 в этом каучуке аналогичен процессу, приведенному в примере патента №2686789 или в ТР-015-01-2018 относительно двойного - СКЭП-40. Маркировка продукта - СКЭПТ-40-ДАХ-10, в котором, как и в СКЭП-40-ДАХ-10, содержится, % мас.: качука-25,00; АХ-67,50; ЭР-7,50. СКЭПТ-40-ДАХ-10 и СКЭП-40-ДАХ-10 также, отправляют на участок приготовления смесей.

Пример 6

Приготовление заявленной резиновой смеси, содержащей 4,44 мас.ч. серных капсул (SK-22,5) на 100 мас.ч. комбинации каучуков НК и БНКС-18 (50:50%, мас.) 4,44 - это содержание серных капсул из расчета, что в них содержится столько же серы (1 г.), как и в смеси прототипа. Использовался НК марки SVR-3L вьетнамского производства, а БНКС-18 бутадиеннитрильный каучук, производства АО «Красноярский завод СК». Процесс приготовления начинается с роспуска навески НК, равной 300,00 г. на вальцах 320 160/160 при температуре валков 45-50°С. После образования на переднем валке плотной «шкурки» НК небольшими порциями (по 50-70 г.) по всей длине валка загружают БНКС-18. Вальцевание проводят, подрезая смесь и направляя «куклы» во вращающийся запас. Продолжают смешение до пластичности по Карреру 0,25-0,29. После чего загружают небольшими порциями СКЭП-40-ДАХ-10. Каждый раз повторяют операции подрезки смеси, сворачивание смеси в «куклу», гомогенизации - до исчезновения «муаровых» разводов, загрузки очередной порции СКЭП-40-ДАХ-10 и т.д., до полного введения в каучук расчетного количества СКЭП-40-ДАХ-10, которое, в данном примере и в последующих, в том числе с использованием СКЭПТ-40-ДАХ-10, составляет 130 мас.ч на 100 мас.ч комбинации каучуков: НК и БНКС-18. Смешение продолжают до пластичности по Карреру 0,35-0,38. После чего вводят остальные ингредиенты, указанные в табл. 1, по общепринятой технологии приготовления смесей, обращая внимание на тот факт, что серу в контрольные смеси, как и серные капсулы - в заявляемые, следует вводить в последнюю стадию.

Приготовление резиновых смесей, как заявляемой, так и по прототипу, осуществляют либо на вальцах, либо в резиносмесителе по общепринятой технологии. Вулканизацию проводят в электропрессе при 150°С в течение 30 мин.

Пример 7

Отличается от примера 6 тем, что содержание серы в серной капсуле (SK-25,0) составляет 25% мас., а серных капсул на 100 мас.ч. комбинации каучуков - 4,00 мас.

Пример 8

Отличается от примера 6, тем, что содержание серы в серной капсуле (SK-27,5) составляет 27,5%, мас. композиций каучуков, а серных капсул на 100 мас.ч комбинаций каучуков - 3,64 мас.ч.

Пример 9

Отличается от примера 6 тем, что используется СКЭПТ-40-ДАХ-10 Приготовление резиновой смеси на вальцах, с его использованием, заканчивается по достижении пластичности по Карреру 0,37-0,39. Его содержание в смеси - 130 мас.ч. на 100 мас.ч комбинации каучуков, а серных капсул (SK-25,0) - 4,00 мас.ч.

Пример 10

Резиновая смесь по прототипу.

Пример 11

Резиновая смесь изготавливается по прототипу с использованием, вместо серы, серных капсул SK-25,00.

Пример 12

Резиновая смесь изготавливается по прототипу, но основой является комбинация каучуков, мас.ч.: 50,00 НК и 50,00 БНКС-18. Вулканизация осуществлялась серой (в отсутствии серных капсул).

Составы резиновых смесей, изготовленных по примерам 6, 7, 8, 9, 10, 11 и 12 представлены в табл. 1

Пример 13

Определялись физико-механические показатели (табл. 4) вулканизатов, резиновых смесей, изготовленных по примеру 7 и 12 после пребывания в полиэмульсане в течение 60-ти суток при 12°С в виде лопаток, пластин и шайб для определения, соответственно, условной прочности при разрыве (МПа) твердости (Шор А) и эластичности по отскоку (%) (ГОСТ 270-75).

Составы резиновых смесей

Свойства вулканизатов, изготовленных из смесей по прототипу (по примерам 10, 11 и 12), как и свойства вулканизатов из заявляемых смесей, (по примерам 6, 7, 8 и 9), представлены в табл. 2. В табл. 3 приведены данные набухания вулканизатов в полиэмульсане.

Физико-механические свойства вулканизатов

Кинетика набухания в полиэмульсане.

Приведены значения изменения высоты образцов в виде шайб, %.

В числителе, приведенных в табл. 3 значений, изменение высоты шайбы, первоначальный размер которой 9 мм, в знаменателе - 24 мм. Обе шайбы 050 мм. Параллельное испытание шайб различной высоты делалось для того, чтобы в полной мере оценить влияние малеиновой кислоты, которая находится в составе дисперсионной среды серной пасты. Влияние кислоты особенно заметно, в случае набухания шайбы высотой 24 мм (см. фиг. 1), когда возрастание внутренних напряжений способствует ускорению гидролиза связей типа: .

Через 60 суток, когда процесс набухания становится практически равновесным и произошла, в достаточной степени, диссипация внутренних перенапряжений, возможно, вновь, образование пространственных связей за счет малеиновой кислоты. Эти процессы протекают и в относительно не высоких шайбах или, естественно, в манжетах с относительно тонким резиновым слоем, но констатировать их гораздо сложнее. Вероятно, это происходит из-за возрастания ошибки эксперимента при определении высоты относительно тонких образцов. Поэтому, степени набухания как с обычной серой, так и с серными капсулами, как бы, выравниваются. Тем не менее, в итоге, как это следует из табл. 4 и результатов стендовых испытаний (фиг. 2) (показана манжета с ее конструктивными размерами, которая содержит 1 - колонна стенда; 2 - манжета; 3 - базовая труба), эффект использования серных капсул достаточно существенен. Это, по сути, может явиться основным выводом, свидетельствующим о новизне решения и приоритетности заявляемой резиновой смеси. Таким образом, данные, приведенные в табл. 4, свидетельствуют о наибольшем сохранении физико-механических свойств вулканизатами заявляемой резиновой смеси, структурированной серными капсулами. Это обстоятельство может быть особенно важным, если представить ситуацию, когда по истечении определенного времени, порожний, после эксплуатации пласт, вновь заполняется углеводородами и их проникновение на поверхность, как показано на схеме фиг. 3 (где 1- колонна стенда; 2 - манжета; 3 - базовая труба; 4 - пласт), будет вполне вероятностным, если манжета утратит свои запорные функции. Стендовые испытания пакера с манжетой из заявляемой резиновой смеси (фиг. 2), состава по примеру 7, могут, в определенной степени, засвидетельствовать о сохранении запорных функции после того, как манжета, находясь в контакте с полиэмульсаном в течение 60 суток при 12°С, выдержала давление рабочей жидкости (полиэмульсана) после 4-х циклов его нагнетания: 1 цикл - 100 атм, 10 мин.; 2 - 200 атм., 10 мин.; 3 - 300 атм., 10 мин.; 4 - 440 атм., 10 мин. После этого полиэмульсан удаляли и через 30 суток вновь повторяли испытания в прежних условиях и с прежними параметрами. При этом сброса давления ни на одном из циклов испытаний, не произошло. В то же время при испытании пакера с манжетой, изготовленной из резиновой смеси по примеру 12 (без использования серных капсул), сброс давления произошел уже при втором цикле испытаний.

Физико-механические показатели вулканизатов после 60 суток пребывания в полиэмульсане.

Как следует из представленных данных (табл. 2, 3 и 4), резины и резиновые манжеты опытного стенда, изготовленные в соответствии с заявляемыми резиновыми смесями, по всем заявленным параметрам превосходят резины, изготовленные по прототипу.

Резиновая смесь для изготовления резиновых манжет, набухающих в буровом растворе «Полиэмульсан», на основе комбинации натурального каучука и бутадиеннитрильного каучука БНКС-18, содержащая асбест хризотиловый, диспергированный в расплаве ε-капролактама с производными п-фенилендиамина, дисперсия которого, в свою очередь, диспергирована в двойном этиленпропиленовом или тройном этиленпропилендиеновом каучуках, а в качестве вулканизующего агента - серу, причем сера, находящаяся в пасте с дисперсионной средой, представленной эвтектическим расплавом ε-капролактама и малеиновой кислоты, заключена в капсулу с оболочкой из коллоидной кремнекислоты при следующем соотношении компонентов серной капсулы, % масс.:

Сера 22,50-27,50
Коллоидная кремнекислота (БС-120) 50,00
ε-Капролактам 13,50-16,5
Малеиновая кислота 9,00-11,00

и серная капсула вводится в комбинацию каучуков при следующем содержании основных компонентов смеси, мас.ч.:

Каучук БНКС-18 50,00
Каучук натуральный 50,00
Дисперсия этиленпропиленового или
этиленпропилендиенового каучука
с диспергированным асбестом хризотиловым 130,00
Серная капсула 3,64-4,44



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности, а именно к средствам для перекрытия внутренней полости между обсадной трубой и стенкой скважины, в частности к пакеру для крепления хвостовиков в скважинах при заканчивании вертикальных, наклонных, а также горизонтальных скважин. Пакер включает пакерующие элементы с набухающим материалом и защитные диски.

Изобретение относится к оборудованию для нефтегазовой промышленности и может быть использовано для разобщения межтрубного пространства при эксплуатации скважин электропогружным насосным оборудованием. Пакер гидравлический двуствольный состоит из двух стволов, соединенных сверху муфтой, уплотнительных элементов, якоря, содержащего конусы, плашки и кожух, гидравлического привода.

Заявлен способ заканчивания скважин. Техническим результатом является сокращение сроков бурения и начала освоения.

Группа изобретений относится к скважинному приточному устройству ограничения добычи, предназначенному для установки в отверстии в скважинной трубчатой металлической конструкции, расположенной в стволе скважины, а также к скважинной системе заканчивания скважины и способу заканчивания скважины для подготовки скважины к оптимальной добыче.

Изобретение относится к магниевому сплаву и может быть использовано в качестве скважинного инструмента для гидравлического разрыва пласта. Магниевый сплав, пригодный для применения в качестве подверженного коррозии скважинного изделия, содержит, мас.%: 2-7 Gd, 0-1 Y, 0-5,0 Nd, 0-0,5 Zr, 0,1-2 Ni, магний и неизбежные примеси - остальное, при этом сплав имеет измеренное согласно стандарту ASTM B557M-10 относительное удлинение по меньшей мере 22%.

Изобретение относится к оборудованию для нефтегазодобывающей промышленности и может быть использовано для длительного герметичного разобщения интервалов ствола эксплуатационной колонны как нагнетательной скважины, так и эксплуатационной нефтяной или газовой обсаженной скважины, и защиты ее от динамического воздействия рабочей среды в процессе проведения различных технологических операций.

Изобретение относится к оборудованию для нефтегазодобывающей промышленности и может быть использовано для герметичного разобщения интервалов ствола обсадной колонны скважины в процессе проведения технологических операций. Пакер скважинный гидромеханический включает установленные на полом штоке в направлении сверху вниз функционально раздельные узлы: байпасный узел, состоящий из закрепленного на полом штоке установочного переводника, к которому присоединена байпасная втулка, уплотнителя, перепускного плунжера, размещенного внутри корпуса разобщающего клапана; гидроякорный узел; узел герметизации, состоящий из герметизирующих элементов с кольцами; посадочный узел, состоящий из конуса и цанги, установленной с возможностью удержания полого штока в транспортном положении и установленного ниже механического якоря.

Изобретение относится к области резинотехнических изделий, а именно к резиновой смеси для производства водонефтенабухающих резинотехнических изделий на основе каучуков, в том числе водонефтенабухающих пакеров. Резиновая смесь в качестве основы содержит этилен-пропилен-диеновый, предпочтительно норборненовый, каучук (СКЭПТ), гидрированный бутадиен-нитрильный каучук (ГБНКС), пространственно-сшитый поливинилпирролидон (с-ПВП), сшитые полисахаридами или их производными эфиры акриловой кислоты (СПЭАК) и функциональные и технологические добавки.

Изобретение относится к нефтегазодобывающей промышленности и может использоваться при строительстве скважин для разобщения пластов. Пакер гидравлический содержит ствол в виде трубы, оснащенный верхним и нижним переводниками.

Группа изобретений относится к горному делу, в частности к устройствам для разобщения зон обсадных колонн при проведении ремонтных, изоляционных и исследовательских работ. Пакер электроприводной, в первом варианте, содержит полый ствол, корпус, электроприводы, якорь, манжету с упором, установленными на стволе с возможностью перевода пакера из транспортного в рабочее положение.
Изобретение относится к композициям, сочетающим свойства вулканизированных эластомеров при эксплуатации и термопластов в процессе переработки, а также к способу получения таких композиций и изделий на их основе. Предложена композиция динамически вулканизованного термоэластопласта, содержащая (мас.%): от 5 до 50 мас.% полипропилен и/или сополимеры пропилена с олефинами, содержащими от 2 до 6 атомов углерода (5-50); нитрилсодержащий каучук (30-85); полимерные совместители (компатибилизаторы) (2—40); полимерные эластифицирующие агенты (0-40); сложноэфирные пластификаторы (0-30) и вулканизирующую систему (1-13).
Наверх