Элемент в виде линзы

Элемент в виде очковой линзы, предназначенный для ношения перед глазом человека, содержит область преломления, обладающую первой преломляющей способностью, основанной на рецепте для коррекции аномального преломления глаза человека, и второй преломляющей способностью, отличной от первой преломляющей способности, так чтобы увеличивать расфокусировку световых лучей; и множество из по меньшей мере трех оптических элементов. По меньшей мере один оптический элемент обладает оптической функцией не фокусировать изображение на сетчатке глаза для того, чтобы замедлить прогрессирование аномального преломления глаза. Область преломления образована как область, отличная от области, образованной множеством оптических элементов. Технический результат - подавление или по меньшей мере замедление прогрессирования аномального преломления глаза, такого как миопия или гиперопия. 14 з.п. ф-лы, 11 ил., 3 табл.

 

Область техники

Настоящее изобретение относится к элементу в виде линзы, предназначенному для ношения перед глазом человека для подавления прогрессирования аномального преломления глаза, такого как миопия или гиперопия.

Предпосылки к созданию изобретения

Миопия глаза характеризуется тем, что глаз фокусирует удаленные объекты перед сетчаткой. Коррекцию миопии обычно осуществляют с использованием вогнутой линзы, а коррекцию гиперопии обычно осуществляют с использованием выпуклой линзы.

Было сделано наблюдение, что у некоторых людей, в частности у детей, при коррекции с использованием традиционных однофокальных оптических линз при наблюдении объекта, расположенного на небольшом расстоянии от них, т.е. в условиях зрения на малое расстояние, они фокусируются неточно. По причине этого дефекта фокусировки, в той части глаза ребенка с миопией, которая подвергается коррекции зрения на большое расстояние, изображение расположенного рядом объекта также образуется за сетчаткой и даже в фовеальной области.

Этот дефект фокусировки может оказывать влияние на прогрессирование миопии у таких людей. У большинства указанных людей наблюдается усиление дефекта миопии с течением времени.

Поэтому оказывается, что существует потребность в элементе в виде линзы, который мог бы подавлять или по меньшей мере замедлять прогрессирование аномального преломления глаза, такого как миопия или гиперопия.

Сущность изобретения

С этой целью согласно настоящему изобретению предлагается элемент в виде линзы, предназначенный для ношения перед глазом человека, содержащий:

- область преломления, обладающую первой преломляющей способностью, основанной на рецепте для коррекции аномального преломления указанного глаза человека, и второй преломляющей способностью, отличной от первой преломляющей способности;

- множество из по меньшей мере трех оптических элементов, причем по меньшей мере один оптический элемент обладает оптической функцией не фокусировать изображение на сетчатке глаза для того, чтобы замедлить прогрессирование аномального преломления глаза.

Преимущественно наличие второй преломляющей способности, отличной от первой преломляющей способности для коррекции аномального преломления глаза человека, в области преломления обеспечивает увеличение расфокусировки световых лучей перед сетчаткой в случае миопии.

Другими словами, авторы изобретения сделали наблюдение, что наличие в области преломления второй преломляющей способности, отличной от преломляющей способности для коррекции аномального преломления, в сочетании с оптическими элементами, обладающими оптической функцией не фокусировать изображение на сетчатке глаза, способствует замедлению прогрессирования аномального преломления глаза, такого как миопия или гиперопия.

Решение настоящего изобретения также помогает улучшить эстетические свойства линзы и помогает компенсировать задержку аккомодационного ответа.

Согласно дополнительным вариантам осуществления, которые могут рассматриваться по отдельности или вместе:

- разница между первой преломляющей способностью и второй преломляющей способностью больше чем или равна 0,5 D; и/или

- преломляющая область образована как область, отличная от областей, образованных как множество оптических элементов; и/или

- по меньшей мере один оптический элемент обладает несферической оптической функцией; и/или

- по меньшей мере один, например все, из оптических элементов обладают оптической функцией фокусировки изображения в положении, отличном от сетчатки; и/или

- в преломляющей области преломляющая способность характеризуется непрерывной изменчивостью; и/или

- в преломляющей области преломляющая способность характеризуется по меньшей мере одним нарушением непрерывности; и/или

- элемент в виде линзы разделен на пять дополнительных зон: центральную зону, обладающую силой, равной первой преломляющей способности, и четыре квадранта под углом 45°, причем по меньшей мере один из квадрантов обладает преломляющей способностью, равной второй преломляющей способности; и/или

- центральная зона содержит исходную точку системы координат, которая обращена к зрачку человека, смотрящего прямо вперeд в стандартных условиях ношения, и имеет диаметр более 4 мм и менее 20 мм; и/или

- по меньшей мере квадрант нижней части обладает второй преломляющей способностью; и/или

- область преломления обладает диоптрической функцией прогрессивной аддидации; и/или

- по меньшей мере один из височного и носового квадранта обладает второй преломляющей способностью; и/или

- четыре квадранта обладают концентрической прогрессией силы; и/или

- для каждой круговой зоны, имеющей радиус, составляющий от 2 до 4 мм, с геометрическим центром, расположенным от начала системы координат, обращенного к зрачку носящего, смотрящего прямо в стандартных условиях ношения, на расстоянии, большем или равном сумме указанного радиуса и 5 мм, отношение между суммой площадей частей оптических элементов, расположенных внутри указанной круговой зоны, и площадью указанной круговой зоны составляет от 20% до 70%; и/или

- по меньшей мере три оптических элемента не являются непрерывными; и/или

- по меньшей мере один из оптических элементов представляет собой сферическую микролинзу; и/или

- по меньшей мере один из оптических элементов представляет собой мультифокальную преломляющую микролинзу; и/или

- по меньшей мере одна мультифокальная преломляющая микролинза содержит асферическую поверхность, обладающую или не обладающую какой-либо вращательной симметрией; и/или

- по меньшей мере один из оптических элементов представляет собой торическую преломляющую микролинзу; и/или

- по меньшей мере один из оптических элементов представляет собой цилиндрическую микролинзу; и/или

- по меньшей мере одна мультифокальная преломляющая микролинза содержит торическую поверхность; и/или

- по меньшей мере один из оптических элементов выполнен из двулучепреломляющего материала; и/или

- по меньшей мере один из оптических элементов представляет собой дифракционную линзу; и/или

- по меньшей мере одна дифракционная линза содержит метаповерхностную структуру; и/или

- по меньшей мере один из оптических элементов имеет форму, выполненную таким образом, что она создает каустику перед сетчаткой глаза человека; и/или

- по меньшей мере один оптический элемент представляет собой мультифокальный бинарный компонент; и/или

- по меньшей мере один оптический элемент представляет собой пиксельную линзу; и/или

- по меньшей мере один оптический элемент представляет собой π-линзу Френеля; и/или

- по меньшей мере часть, например все, из оптических элементов расположены на передней поверхности офтальмологической линзы; и/или

- по меньшей мере часть, например все, из оптических элементов расположены на задней поверхности офтальмологической линзы; и/или

- по меньшей мере часть, например все, из оптических элементов расположены между передней и задней поверхностями офтальмологической линзы; и/или

- по меньшей мере часть, например все, из оптических функций содержат оптические аберрации высокого порядка; и/или

- элемент в виде линзы содержит офтальмологическую линзу, содержащую область преломления, и насадку, содержащую множество из по меньшей мере трех оптических элементов, приспособленных для съемного прикрепления к офтальмологической линзе, когда элемент в виде линзы надет, и/или

- оптические элементы выполнены таким образом, что вдоль по меньшей мере одной секции линзы средняя сфера оптических элементов увеличивается от точки указанной секции к периферической части указанной секции; и/или

- оптические элементы выполнены таким образом, что вдоль по меньшей мере одной секции линзы средний цилиндр оптических элементов увеличивается от точки указанной секции к периферической части указанной секции; и/или

- оптические элементы выполнены таким образом, что вдоль по меньшей мере одной секции линзы средняя сфера и/или средний цилиндр оптических элементов увеличивается от центра указанной секции к периферической части указанной секции; и/или

- область преломления содержит оптический центр, и оптические элементы выполнены таким образом, что вдоль любой секции, проходящей через оптический центр линзы, средняя сфера и/или средний цилиндр оптических элементов увеличивается от оптического центра к периферической части линзы; и/или

- область преломления содержит исходную точку для зрения на большое расстояние, исходную точку для зрения на малое расстояние и меридиан, соединяющий исходные точки зрения на большое и малое расстояние, причем оптические элементы выполнены таким образом, что в стандартных условиях ношения вдоль любой горизонтальной секции линзы средняя сфера и/или средний цилиндр оптических элементов, которые не являются непрерывными, увеличивается от пересечения указанной горизонтальной секции с меридианом к периферической части линзы; и/или

- функция увеличения средней сферы и/или среднего цилиндра вдоль секций отличается в зависимости от положения указанной секции вдоль меридиана; и/или

- функция увеличения средней сферы и/или среднего цилиндра вдоль секций является несимметричной; и/или

- оптические элементы выполнены таким образом, что в стандартных условиях ношения по меньшей мере одна секция является горизонтальной секцией; и/или

- средняя сфера и/или средний цилиндр оптических элементов увеличивается от первой точки указанной секции к периферической части указанной секции и уменьшается от второй точки указанной секции к периферической части указанной секции, причем вторая точка расположена ближе к периферической части указанной секции, чем первая точка; и/или

- функция увеличения средней сферы и/или среднего цилиндра вдоль по меньшей мере одной горизонтальной секции представляет собой гауссову функцию; и/или

- функция увеличения средней сферы и/или среднего цилиндра вдоль по меньшей мере одной горизонтальной секции представляет собой квадратичную функцию; и/или

- по меньшей мере один из, например по меньшей мере 70%, например все, из оптических элементов представляют собой активный оптический элемент, который может быть активирован устройством управления оптической линзой; и/или

- активный оптический элемент содержит материал, имеющий переменный коэффициент преломления, значение которого контролируется устройством управления оптической линзой; и/или

- по меньшей мере один оптический элемент имеет форму контура, которая может быть вписана в окружность с диаметром, большим или равным 0,8 мм и меньшим или равным 3,0 мм; и/или

- оптические элементы расположены в сети; и/или

- сеть представляет собой структурированную сеть; и/или

- структурированная сеть представляет собой квадратную сеть или шестиугольную сеть, или треугольную сеть, или восьмиугольную сеть; и/или

- элемент в виде линзы дополнительно содержит по меньшей мере четыре оптических элемента, организованные в виде по меньшей мере двух групп оптических элементов; и/или

- каждая группа оптических элементов организована в виде по меньшей мере двух концентрических колец, имеющих общий центр, причем концентрическое кольцо каждой группы оптических элементов определяется внутренним диаметром, соответствующим наименьшей окружности, касательной к по меньшей мере одному оптическому элементу указанной группы, и внешним диаметром, соответствующим наибольшей окружности, касательной к по меньшей мере одному из оптических элементов указанной группы; и/или

- по меньшей мере часть, например все, из концентрических колец оптических элементов имеют центр в оптическом центре поверхности элемента в виде линзы, в котором расположены указанные оптические элементы; и/или

- концентрические кольца оптических элементов имеют диаметр от 9,0 мм до 60 мм; и/или

- расстояние между двумя последовательными концентрическими кольцами оптических элементов больше или равно 5,0 мм, причем расстояние между двумя последовательными концентрическими кольцами определяется разностью между внутренним диаметром первого концентрического кольца и внешним диаметром второго концентрического кольца, причем второе концентрическое кольцо находится ближе к периферии элемента в виде линзы.

Краткое описание графических материалов

Неограничивающие варианты осуществления настоящего изобретения будут описаны ниже со ссылкой на сопроводительные графические материалы, в которых:

на фиг. 1 представлен вид в плане элемента в виде линзы согласно настоящему изобретению;

на фиг. 2 представлен общий вид в профиль элемента в виде линзы согласно настоящему изобретению;

на фиг. 3 представлен пример профиля высоты по Френелю;

на фиг. 4 представлен пример радиального профиля дифракционной линзы;

на фиг. 5 проиллюстрирован профиль π-линзы Френеля;

на фиг. 6a-6c проиллюстрирован вариант осуществления бинарной линзы согласно настоящему изобретению;

на фиг. 7a проиллюстрирована ось γ астигматизма линзы в методе TABO;

на фиг. 7b проиллюстрирована ось γAX цилиндра в методе, используемом для определения асферической поверхности, и

на фиг. 8 представлен вид в плане элемента в виде линзы согласно варианту осуществления настоящего изобретения.

Элементы на фигурах проиллюстрированы для простоты и ясности и не обязательно вычерчены в масштабе. Например, размеры некоторых из элементов на фигуре могут быть преувеличены относительно других элементов для содействия пониманию вариантов осуществления настоящего изобретения.

Подробное описание вариантов осуществления изобретения

Настоящее изобретение относится к элементу в виде линзы, предназначенному для ношения перед глазом человека.

В дальнейшем описании могут использоваться такие термины, как «верхний», «нижний», «горизонтальный», «вертикальный», «над», «под», «передний», «задний» и другие, указывающие относительное расположение. Эти термины следует понимать в условиях ношения элемента в виде линзы.

В контексте настоящего изобретения термин «элемент в виде линзы» может относиться к нефацетированной оптической линзе или очковой оптической линзе, фацетированной для соответствия конкретной очковой оправе, или к офтальмологической линзе и оптическому устройству, приспособленному для расположения на офтальмологической линзе. Оптическое устройство может быть расположено на передней или задней поверхности офтальмологической линзы. Оптическое устройство может представлять собой оптическую накладку. Оптическое устройство может быть приспособлено для съемного расположения на офтальмологической линзе, например, как зажим, выполненный с возможностью закрепления на очковой оправе, содержащей офтальмологическую линзу.

Элемент 10 в виде линзы согласно настоящему изобретению приспособлен для человека и предназначен для ношения перед глазом указанного человека.

Как представлено на фиг. 1, элемент 10 в виде линзы согласно настоящему изобретению содержит:

- область 12 преломления и

- множество из по меньшей мере трех оптических элементов 14.

Область 12 преломления обладает первой преломляющей способностью P1, основанной на рецепте для глаза человека, для которого приспособлен элемент в виде линзы. Рецепт приспособлен для коррекции аномального преломления глаза человека.

Термин «рецепт» следует понимать, как означающий набор оптических свойств: оптической силы, астигматизма, призматического отклонения, определенный офтальмологом или окулистом для коррекции дефектов зрения глаза, например, при помощи линзы, расположенной перед глазом. Например, рецепт для глаза с миопией содержит значения оптической силы и астигматизма с осью для зрения вдаль.

Область 12 преломления дополнительно имеет по меньшей мере вторую преломляющую способность P2, отличную от первой преломляющей способности P1.

В значении настоящего изобретения две преломляющие способности считаются разными, когда разность между двумя преломляющими способностями больше или равна 0,5 D.

Когда аномальное преломление глаза человека соответствует миопии, вторая преломляющая способность больше первой преломляющей способности.

Когда аномальное преломление глаза человека соответствует гиперопии, вторая преломляющая способность меньше первой преломляющей способности.

Преломляющая область предпочтительно образована в качестве области, отличной от областей, образованных как множество оптических элементов. Другими словами, преломляющая область представляет собой дополнительную область к областям, образованным множеством оптических элементов.

Преломляющая область может характеризоваться непрерывной изменчивостью преломляющей способности. Например, преломляющая область может иметь конструкцию с прогрессивной аддидацией.

Оптическая конструкция области преломления может содержать:

- установочный крест там, где оптическая сила отрицательна,

- первую зону, проходящую на височной стороне области преломления, когда носящий носит элемент в виде линзы. В первой зоне оптическая сила увеличивается при движении к височной стороне, а на носовой стороне линзы оптическая сила офтальмологической линзы является по существу такой же, как в установочном кресте.

Такая оптическая конструкция более подробно описана в документе WO2016/107919.

Альтернативно преломляющая способность в преломляющей области может включать по меньшей мере одно нарушение непрерывности.

Как представлено на фиг. 1, элемент в виде линзы может быть разделен на пять дополнительных зон: центральную зону 16, имеющую силу, равную первой преломляющей способности, и четыре квадранта Q1, Q2, Q3, Q4 под углом 45°, причем по меньшей мере один из квадрантов имеет по меньшей мере точку, в которой преломляющая способность равна второй преломляющей способности.

В значении настоящего изобретения «квадранты под углом 45°» следует понимать как равные угловые квадранты под углом 90°, ориентированные в направлениях 45°/225° и 135°/315° согласно методу TABO, как проиллюстрировано на фиг. 1.

Предпочтительно центральная зона 16 содержит исходную точку системы координат, которая обращена к зрачку человека, смотрящего прямо вперeд в стандартных условиях ношения, и имеет диаметр, больший или равный 4 мм и меньший или равный 22 мм.

Под условиями ношения следует понимать положение элемента в виде линзы относительно глаза носящего, например, определенное пантоскопическим углом, расстоянием от роговицы до линзы, расстоянием от зрачка до роговицы, расстоянием от центра вращения глаза (CRE) до зрачка, расстоянием от CRE до линзы и углом обхвата.

Расстояние от роговицы до линзы — это расстояние вдоль визуальной оси глаза в первичном положении (обычно взятом горизонтальным) между роговицей и задней поверхностью линзы; например, оно равно 12 мм.

Расстояние от зрачка до роговицы — это расстояние вдоль визуальной оси глаза между зрачком и роговицей; обычно оно равно 2 мм.

Расстояние от CRE до зрачка — это расстояние вдоль визуальной оси глаза между его центром вращения (CRE) и роговицей; например, оно равно 11,5 мм.

Расстояние от CRE до линзы — это расстояние вдоль визуальной оси глаза в первичном положении (обычно взятом горизонтальным) между CRE и задней поверхностью линзы; например, оно равно 25,5 мм.

Пантоскопический угол представляет собой угол в вертикальной плоскости на пересечении между задней поверхностью линзы и визуальной осью глаза в первичном положении (обычно взятом горизонтальным) между нормалью к задней поверхности линзы и визуальной осью глаза в первичном положении; например, он равен -8°.

Угол обхвата представляет собой угол в горизонтальной плоскости на пересечении между задней поверхностью линзы и визуальной осью глаза в первичном положении (обычно взятом горизонтальным), между нормалью к задней поверхности линзы и визуальной осью глаза в первичном положении; например, он равен 0°.

Пример стандартного условия для носящего может быть определен пантоскопическим углом -8°, расстоянием от роговицы до линзы 12 мм, расстоянием от зрачка до роговицы 2 мм, расстоянием от CRE до зрачка 11,5 мм, расстоянием от CRE до линзы 25,5 мм и углом обхвата 0°.

Согласно варианту осуществления настоящего изобретения по меньшей мере квадрант Q4 нижней части обладает второй преломляющей способностью, отличной от первой преломляющей способности, соответствующей рецепту для коррекции аномального преломления.

Например, преломляющая область обладает диоптрической функцией прогрессивной аддидации. Диоптрическая функция прогрессивной аддидации может проходить между квадрантом Q2 верхней части и квадрантом Q4 нижней части.

Преимущественно такая конфигурация обеспечивает возможность компенсации задержки аккомодационного ответа, когда человек смотрит, например, при зрении на малое расстояние, благодаря аддидации линзы.

Согласно варианту осуществления по меньшей мере один из височного Q3 и носового Q1 квадрантов обладает второй преломляющей способностью. Например, височный Q3 квадрант имеет изменение силы с эксцентриситетом линзы.

Преимущественно такая конфигурация повышает эффективность контроля аномального преломления в периферическом зрении с еще большим эффектом по горизонтальной оси.

Согласно варианту осуществления, четыре квадранта Q1, Q2, Q3 и Q4 обладают концентрической прогрессией силы.

По меньшей мере один оптический элемент из множества из по меньшей мере трех оптических элементов 14 обладает оптической функцией не фокусировать изображение на сетчатке глаза человека при ношении элемента в виде линзы в стандартных условиях ношения.

Преимущественно такая оптическая функция оптического элемента в сочетании с преломляющей областью, обладающей по меньшей мере одной преломляющей способностью, отличной от преломляющей способности рецепта, обеспечивает замедление прогрессирования аномального преломления глаза человека, носящего элемент в виде линзы.

Как представлено на фиг. 1, оптические элементы могут не быть непрерывными оптическими элементами.

В значении настоящего изобретения два оптических элемента не являются непрерывными, если для всех путей, соединяющих два оптических элемента, можно измерить по меньшей мере вдоль части каждого пути преломляющую способность, основанную на рецепте для глаза человека.

Когда два оптических элемента расположены на сферической поверхности, два оптических элемента не являются непрерывными, если для всех путей, соединяющих два оптических элемента, можно измерить по меньшей мере вдоль части каждого пути кривизну указанной сферической поверхности.

Как проиллюстрировано на фиг. 2, элемент 10 в виде линзы согласно настоящему изобретению содержит поверхность F1 на стороне объектов, образованную как криволинейная поверхность, выпуклая к стороне объектов, и поверхность F2 на стороне глаза, образованную как вогнутая поверхность, имеющая иную кривизну, чем у поверхности F1 на стороне объектов.

Согласно варианту осуществления настоящего изобретения по меньшей мере часть, например все, из оптических элементов расположены на передней поверхности элемента в виде линзы.

По меньшей мере часть, например все, из оптических элементов могут быть расположены на задней поверхности элемента в виде линзы.

По меньшей мере часть, например все, из оптических элементов могут быть расположены между передней и задней поверхностями элемента в виде линзы. Например, элемент в виде линзы может содержать зоны с разным коэффициентом преломления, которые образуют оптические элементы.

Согласно варианту осуществления настоящего изобретения центральная зона линзы, соответствующая зоне с центром в оптическом центре элемента в виде линзы, не содержит оптические элементы. Например, элемент в виде линзы может содержать пустую зону с центром в оптическом центре указанного элемента в виде линзы и имеющую диаметр, равный 0,9 мм, которая не содержит оптические элементы.

Оптический центр элемента в виде линзы может соответствовать месту установки линзы.

Альтернативно оптические элементы могут быть расположены на всей поверхности элемента в виде линзы.

Согласно вариантам осуществления настоящего изобретения оптические элементы расположены в сети.

Сеть, в которой расположены оптические элементы, может представлять собой структурированную сеть.

В вариантах осуществления, проиллюстрированных на фиг. 8, оптические элементы расположены вдоль множества концентрических колец.

Концентрические кольца оптических элементов могут представлять собой круглые кольца.

Согласно варианту осуществления настоящего изобретения элемент в виде линзы дополнительно содержит по меньшей мере четыре оптических элемента. По меньшей мере четыре оптических элемента организованы в виде по меньшей мере двух групп оптических элементов, причем каждая группа оптических элементов организована в виде по меньшей мере двух концентрических колец, имеющих общий центр, и концентрическое кольцо каждой группы оптических элементов определяется внутренним диаметром и внешним диаметром.

Внутренний диаметр концентрического кольца каждой группы оптических элементов соответствует наименьшей окружности, касательной к по меньшей мере одному оптическому элементу указанной группы оптических элементов. Внешний диаметр концентрического кольца оптического элемента соответствует наибольшей окружности, касательной к по меньшей мере одному оптическому элементу указанной группы.

Например, элемент в виде линзы может содержать n колец оптических элементов, относится к внутреннему диаметру концентрического кольца, ближайшего к оптическому центру элемента в виде линзы, относится к внешнему диаметру концентрического кольца, ближайшего к оптическому центру элемента в виде линзы, относится к внутреннему диаметру концентрического кольца, ближайшего к периферии элемента в виде линзы, и относится к внешнему диаметру концентрического кольца, ближайшего к периферии элемента в виде линзы.

Расстояние Di между двумя последовательными концентрическими кольцами оптических элементов i и i+1 можно выразить как:

где относится к внешнему диаметру первого кольца оптических элементов i, и относится к внутреннему диаметру второго кольца оптических элементов i+1, т.е. кольца, следующего за первым кольцом и являющегося более близким к периферии элемента в виде линзы.

Согласно другому варианту осуществления настоящего изобретения оптические элементы организованы в виде концентрических колец с центром в оптическом центре поверхности элемента в виде линзы, на которой расположены эти оптические элементы, и соединяющие геометрические центры оптических элементов.

Например, элемент в виде линзы может содержать n колец оптических элементов, относится к диаметру кольца, ближайшего к оптическому центру элемента в виде линзы, и относится к диаметру кольца, ближайшего к периферии элемента в виде линзы.

Расстояние Di между двумя последовательными концентрическими кольцами оптических элементов i и i+1 можно выразить как:

где относится к диаметру первого кольца оптических элементов i, и относится к диаметру второго кольца оптических элементов i+1, т.е. кольца, следующего за первым кольцом и являющегося более близким к периферии элемента в виде линзы, и

где относится к диаметру оптических элементов в первом кольце оптических элементов, и относится к диаметру оптических элементов во втором кольце оптических элементов, т.е. кольце, следующем за первым кольцом и являющемся более близким к периферии элемента в виде линзы. Диаметр оптического элемента соответствует диаметру окружности, в которую вписана форма контура оптического элемента.

Концентрические кольца оптических элементов могут представлять собой круглые кольца.

Преимущественно оптический центр элемента в виде линзы и центр концентрических колец оптических элементов совпадают. Например, совпадают геометрический центр элемента в виде линзы, оптический центр элемента в виде линзы и центр концентрических колец оптических элементов.

В значении настоящего изобретения термин «совпадать» следует понимать как «находится действительно близко друг к другу», например на расстоянии менее 1,0 мм.

Расстояние Di между двумя последовательными концентрическими кольцами может изменяться в соответствии с i. Например, расстояние Di между двумя концентрическими кольцами может изменяться от 2,0 мм до 5,0 мм.

Согласно варианту осуществления настоящего изобретения расстояние Di между двумя последовательными концентрическими кольцами оптических элементов составляет более 2,00 мм, предпочтительно 3,0 мм, более предпочтительно 5,0 мм.

Преимущественно наличие расстояния Di между двумя последовательными концентрическими кольцами оптических элементов больше 2,00 мм обеспечивает возможность управления большей преломляющей областью между этими кольцами оптических элементов и, таким образом, обеспечивает большую остроту зрения.

Что касается кольцевой зоны элемента в виде линзы, имеющей внутренний диаметр более 9 мм и внешний диаметр менее 57 мм, при наличии геометрического центра, расположенного на расстоянии менее 1 мм от оптического центра элемента в виде линзы, отношение между суммой площадей частей оптических элементов, расположенных внутри указанной круговой зоны, и площадью указанной круговой зоны составляет от 20% до 70%, предпочтительно от 30% до 60%, и более предпочтительно от 40% до 50%.

Другими словами, авторы изобретения сделали наблюдение, что при заданном значении вышеупомянутого отношения организация оптических элементов в виде концентрических колец, если эти кольца находятся на расстоянии более 2,0 мм, обеспечивает возможность создания кольцевых зон преломляющей области, которые проще изготавливать, чем в случае преломляющей области, с которой приходится иметь дело, когда оптический элемент располагается в шестиугольной сети или случайно располагается на поверхности элемента в виде линзы, тем самым, обеспечивая лучшую коррекцию аномального преломления глаза и, таким образом, большую остроту зрения.

Согласно варианту осуществления настоящего изобретения диаметры di всех оптических элементов элемента в виде линзы являются одинаковыми.

Согласно варианту осуществления настоящего изобретения расстояние Di между двумя концентрическими кольцами i и i+1 может увеличиваться при увеличении i к периферии элемента в виде линзы.

Концентрические кольца оптических элементов могут иметь диаметр от 9 мм до 60 мм.

Согласно варианту осуществления настоящего изобретения элемент в виде линзы содержит оптические элементы, расположенные в виде по меньшей мере 2 концентрических колец, предпочтительно в виде более чем 5, еще более предпочтительно в виде более чем 10 концентрических колец. Например, оптические элементы могут быть расположены в виде 11 концентрических колец, с центром в оптическом центре линзы.

Согласно варианту осуществления настоящего изобретения по меньшей мере один из оптических элементов обладает оптической функцией фокусировки изображения в положении, отличном от сетчатки.

Предпочтительно по меньшей мере 50%, например, по меньшей мере 80%, например, все из оптических элементов обладают оптической функцией фокусировки изображения в положении, отличном от сетчатки.

Согласно варианту осуществления настоящего изобретения оптические элементы выполнены таким образом, что по меньшей мере вдоль одной секции линзы средняя сфера оптических элементов увеличивается от точки указанной секции к периферии указанной секции.

Оптические элементы могут быть дополнительно выполнены таким образом, что по меньшей мере вдоль одной секции линзы, например по меньшей мере той же секции, как и секция, вдоль которой увеличивается средняя сфера оптических элементов, средний цилиндр увеличивается от точки указанной секции, например той же точки, что и в случае средней сферы, к периферической части указанной секции.

Преимущественно наличие оптических элементов, сконфигурированных таким образом, что вдоль по меньшей мере одной

секции линзы средняя сфера и/или средний цилиндр оптических элементов увеличивается от точки указанной секции к периферической части указанной секции, обеспечивает увеличение расфокусировки световых лучей перед сетчаткой в случае миопии или за сетчаткой в случае гиперопии.

Другими словами, авторы изобретения сделали наблюдение, что наличие оптических элементов, выполненных таким образом, что вдоль по меньшей мере одной секции линзы средняя сфера оптических элементов увеличивается от некоторой точки указанной секции к периферической части указанной секции, способствует замедлению прогрессирования аномального преломления глаза, такого как миопия или гиперопия.

Как известно, минимальная кривизна CURVmin определяется в любой точке на асферической поверхности по формуле:

где Rmax — локальный максимальный радиус кривизны, выраженный в метрах, и CURVmin выражена в диоптриях.

Аналогично, максимальную кривизну CURVmax можно определить в любой точке на асферической поверхности по формуле:

где Rmin — локальный минимальный радиус кривизны, выраженный в метрах, и CURVmax выражена в диоптриях.

Следует отметить, что, если поверхность является локально сферической, локальный минимальный радиус кривизны Rmin и локальный максимальный радиус кривизны Rmax равны, и, соответственно, максимальная и максимальная кривизна CURVmin и CURVmax также являются одинаковыми. Если поверхность является асферической, то локальный минимальный радиус кривизны Rmin и локальный максимальный радиус кривизны Rmax отличаются.

Из выражений для минимальной и максимальной кривизны CURVmin и CURVmax в соответствии с типом рассматриваемой поверхности можно вывести минимальную и максимальную сферы, обозначаемые SPHmin и SPHmax.

Если рассматриваемой поверхностью является поверхность на стороне объектов (также называемая передней поверхностью), выражения являются следующими:

, и

где n представляет собой коэффициент преломления составляющего материала линзы.

Если рассматриваемой поверхностью является поверхность на стороне глазного яблока (также называемая задней поверхностью), выражения являются следующими:

и

где n представляет собой коэффициент преломления составляющего материала линзы.

Как хорошо известно, среднюю сферу SPHmean в любой точке на асферической поверхности можно также определить по формуле:

Таким образом, выражение для средней сферы зависит от рассматриваемой поверхности:

если поверхность — это поверхность на стороне объектов,

если поверхность — это поверхность на стороне глазного яблока,

цилиндр CYL также определяется по формуле .

Свойства любой асферической поверхности линзы можно выразить через локальные средние сферы и цилиндры. Поверхность может считаться локально асферической, когда цилиндр составляет по меньшей мере 0,25 диоптрии.

Для асферической поверхности можно дополнительно определить ось γAX локального цилиндра. На фиг. 7a проиллюстрирована ось γ астигматизма, определенная методом TABO, и на фиг. 7b проиллюстрирована ось γAX цилиндра в методе, определенном для описания асферической поверхности.

Ось γAX цилиндра представляет собой угол ориентации максимальной кривизны CURVmax относительно базовой оси и выбранного направления вращения. В определенном выше методе базовая ось является горизонтальной (угол этой базовой оси составляет 0°), и направление вращения направлено против часовой стрелки для каждого глаза, если смотреть на носящего (0°≤γAX≤180°). Таким образом, значение оси для оси γAX цилиндра, равное +45°, представляет ось, ориентированную наклонно, которая, если смотреть на носящего, проходит из квадранта, расположенного справа вверху, в квадрант, расположенный слева внизу.

Оптические элементы могут быть выполнены таким образом, что вдоль по меньшей мере одной секции линзы средняя сфера и/или средний цилиндр оптических элементов увеличивается от центра указанной секции к периферической части указанной секции.

Согласно варианту осуществления настоящего изобретения оптические элементы выполнены таким образом, что в стандартных условиях ношения по меньшей мере одна секция является горизонтальной секцией.

Средняя сфера и/или средний цилиндр могут увеличиваться согласно функции увеличения вдоль по меньшей мере одной горизонтальной секции, причем функция увеличения представляет собой гауссову функцию. Эта гауссова функция может отличаться для носовой и височной частей линзы для учета асимметрии сетчатки человека.

Альтернативно средняя сфера и/или средний цилиндр могут увеличиваться согласно функции увеличения вдоль по меньшей мере одной горизонтальной секции, причем функция увеличения представляет собой квадратичную функцию. Эта квадратичная функция может отличаться для носовой и височной частей линзы для учета асимметрии сетчатки человека.

Согласно варианту осуществления настоящего изобретения средняя сфера и/или средний цилиндр оптических элементов увеличивается от первой точки указанной секции к периферической части указанной секции и уменьшается от второй точки указанной секции к периферической части указанной секции, причем вторая точка расположена ближе к периферической части указанной секции, чем первая точка.

Этот вариант осуществления проиллюстрирован в таблице 1, где представлена средняя сфера оптических элементов в соответствии с их радиальным расстоянием от оптического центра элемента в виде линзы.

В примере по таблице 1 оптические элементы представляют собой микролинзу, размещенные на сферической передней поверхности, имеющей кривизну 329,5 мм, и элемент в виде линзы выполнен из оптического материала, имеющего коэффициент преломления 1,591, причем предписанная оптическая сила носящего составляет 6 D. Оптический элемент следует носить в стандартных условиях ношения, и считается, что сетчатка носящего обладает расфокусировкой 0,8 D под углом 30°.

Таблица 1

Как проиллюстрировано в таблице 1, начинаясь возле оптического центра элемента в виде линзы, средняя сфера оптических элементов увеличивается к периферической части указанной секции, а затем уменьшается к периферической части указанной секции.

Согласно варианту осуществления настоящего изобретения средний цилиндр оптических элементов увеличивается от первой точки указанной секции к периферической части указанной секции и уменьшается от второй точки указанной секции к периферической части указанной секции, причем вторая точка расположена ближе к периферической части указанной секции, чем первая точка.

Этот вариант осуществления проиллюстрирован в таблицах 2 и 3, где представлен модуль вектора цилиндра, спроецированного на первое направление Y, соответствующее локальному радиальному направлению, и второе направление Х, ортогональное первому направлению.

В примере по таблице 2 оптические элементы представляют собой микролинзы, размещенные на сферической передней поверхности, имеющей кривизну 167,81 мм, и элемент в виде линзы выполнен из материала, имеющего коэффициент преломления 1,591, причем предписанная оптическая сила носящего составляет -6 D. Элемент в виде линзы следует носить в стандартных условиях ношения, и считается, что сетчатка носящего обладает расфокусировкой 0,8 D под углом 30°. Установлено, что элементы обеспечивают периферическую расфокусировку 2 D.

В примере по таблице 3 оптические элементы представляют собой микролинзы, размещенные на сферической передней поверхности, имеющей кривизну 167,81 мм, и элемент в виде линзы выполнен из материала, имеющего коэффициент преломления 1,591, причем предписанная оптическая сила носящего составляет -1 D. Элемент в виде линзы следует носить в стандартных условиях ношения, и считается, что сетчатка носящего обладает расфокусировкой 0,8 D под углом 30°. Оптические элементы определены обеспечивающими периферическую расфокусировку 2 D.

Таблица 2

Направление взгляда
(в градусах)
Px
(в диоптриях)
Py
(в диоптриях)
Цилиндр
(в диоптриях)
0 1,987 1,987 1,987
18,581 2,317 2,431 2,374
27,002 2,577 2,729 2,653
34,594 2,769 2,881 2,825
47,246 2,816 2,659 2,7375
57,02 2,446 1,948 2,197

Таблица 3

Направление взгляда
(в градусах)
Px
(в диоптриях)
Py
(в диоптриях)
Цилиндр
(в диоптриях)
0 1,984 1,984 1,984
18,627 2,283 2,163 2,223
27,017 2,524 2,237 2,3805
34,526 2,717 2,213 2,465
46,864 2,886 1,943 2,4145
56,18 2,848 1,592 2,22

Как проиллюстрировано в таблицах 2 и 3, начинаясь возле оптического центра элемента в виде линзы, цилиндр оптических элементов увеличивается к периферической части указанной секции и затем уменьшается к периферической части указанной секции.

Согласно варианту осуществления настоящего изобретения область преломления содержит оптический центр, и оптические элементы выполнены таким образом, что вдоль любой секции, проходящей через оптический центр линзы, средняя сфера и/или средний цилиндр оптических элементов увеличивается от оптического центра к периферической части линзы.

Например, оптические элементы могут быть равномерно распределены вдоль окружностей с центром в оптическом центре области преломления.

Оптические элементы на окружности, имеющей диаметр 10 мм и с центром в оптическом центре области преломления, могут представлять собой микролинзы, имеющие среднюю сферу 2,75 D.

Оптические элементы на окружности, имеющей диаметр 20 мм и с центром в оптическом центре области преломления, могут представлять собой микролинзы, имеющие среднюю сферу 4,75 D.

Оптические элементы на окружности, имеющей диаметр 30 мм и с центром в оптическом центре области преломления, могут представлять собой микролинзы, имеющие среднюю сферу 5,5 D.

Оптические элементы на окружности, имеющей диаметр 40 мм и с центром в оптическом центре области преломления, могут представлять собой микролинзы, имеющие среднюю сферу 5,75 D.

Средний цилиндр разных микролинз может быть отрегулирован на основе формы сетчатки человека.

Согласно варианту осуществления настоящего изобретения область преломления содержит исходную точку для зрения на большое расстояние, исходную точку для зрения на малое расстояние и меридиан, соединяющий исходные точки для зрения на большое и малое расстояния. Например, область преломления может содержать конструкцию линзы с прогрессивной аддидацией, приспособленную под рецепт человека или приспособленную для замедления прогрессирования аномального преломления глаза человека, носящего элемент в виде линзы.

Предпочтительно согласно такому варианту осуществления оптические элементы выполнены таким образом, что в стандартных условиях ношения вдоль любой горизонтальной секции линзы средняя сфера и/или средний цилиндр оптических элементов увеличивается от пересечения указанной горизонтальной секции с меридианной линией к периферической части линзы.

Меридианная линия соответствует месту пересечения главного направления взгляда с поверхностью линзы.

Функция увеличения средней сферы и/или среднего цилиндра вдоль секций может отличаться в зависимости от положения указанной секции вдоль меридианной линии.

В частности, функция увеличения средней сферы и/или среднего цилиндра вдоль секций является несимметричной. Например, функция увеличения средней сферы и/или среднего цилиндра является несимметричной вдоль вертикальной и/или горизонтальной секции в стандартных условиях ношения.

Согласно варианту осуществления настоящего изобретения по меньшей мере один из оптических элементов обладает несферической оптической функцией.

Предпочтительно по меньшей мере 50%, например, по меньшей мере 80%, например, все из оптических элементов 14 обладают несферической оптической функцией.

В значении настоящего изобретения под «несферической оптической функцией» необходимо понимать отсутствие одной точки фокусировки.

Преимущественно такая оптическая функция оптического элемента уменьшает деформацию сетчатки глаза носящего, обеспечивая возможность замедления прогрессирования аномального преломления глаза человека, носящего элемент в виде линзы.

По меньшей мере один элемент, обладающий несферической оптической функцией, является прозрачным.

Преимущественно оптические элементы, которые не являются непрерывными, не являются видимыми в элементе в виде линзы и не влияют на эстетические свойства элемента в виде линзы.

Согласно варианту осуществления настоящего изобретения элемент в виде линзы может содержать офтальмологическую линзу, содержащую область преломления, и насадку, содержащую множество из по меньшей мере трех оптических элементов, приспособленных для съемного прикрепления к офтальмологической линзе, при ношении элемента в виде линзы. Преимущественно, если человек находится в окружающих условиях с большими расстояниями, например вне помещения, человек может отделять насадку от офтальмологической линзы и, в конечном итоге, заменять второй насадкой, не содержащей ни один из по меньшей мере трех оптических элементов. Например, вторая насадка может содержать солнцезащитную тонировку. Человек также может использовать офтальмологическую линзу без какой-либо дополнительной насадки.

Оптический элемент может быть добавлен в элемент в виде линзы независимо на каждую из поверхностей элемента в виде линзы.

Эти оптические элементы можно добавлять в определенном порядке, таком как квадратный, шестиугольный, случайный и т.д.

Оптический элемент может покрывать конкретные зоны элемента в виде линзы, такие как его центр или любая другая область.

Плотность оптических элементов или величину силы можно регулировать в зависимости от зон элемента в виде линзы. Обычно оптический элемент может быть расположен на периферии элемента в виде линзы для усиления влияния оптического элемента на контроль миопии с целью компенсации периферической расфокусировки, например, вследствие периферической формы сетчатки.

Согласно предпочтительному варианту осуществления настоящего изобретения, для каждой круговой зоны, имеющей радиус, составляющий от 2 до 4 мм, с геометрическим центром, расположенным от оптического центра элемента в виде линзы на расстоянии, которое больше или равно сумме указанного радиуса и 5 мм, отношение между суммой площадей частей оптических элементов, расположенных внутри указанной круговой зоны, и площадью указанной круговой зоны составляет от 20% до 70%, предпочтительно от 30% до 60%, и более предпочтительно от 40% до 50%.

Оптические элементы могут быть выполнены с использованием разных технологий, таких как прямая обработка поверхности, формование, литье или инжекция, тиснение, пленкообразование или фотолитография и т.д.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов имеет форму, выполненную таким образом, что она создает каустику перед сетчаткой глаза человека. Другими словами, такой оптический элемент выполнен таким образом, что каждая плоскость секции, в которой концентрируется световой поток, если таковая имеет место, расположена перед сетчаткой глаза человека.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов, обладающих несферической оптической функцией, представляет собой мультифокальную преломляющую микролинзу.

В значении настоящего изобретения «микролинза» имеет форму контура, которая может быть вписана в окружность, имеющую диаметр больше чем или равный

0,8 мм и меньше чем или равный 3,0 мм, предпочтительно больше чем или равный 1,0 мм и меньше чем 2,0 мм.

В значении настоящего изобретения оптический элемент, представляющий собой «мультифокальную преломляющую микролинзу», включает бифокальные линзы (с двумя оптическими силами), трифокальные линзы (с тремя оптическими силами), линзы с прогрессивной аддидацией с непрерывно изменяющейся оптической силой, например линзы с асферической прогрессивной поверхностью.

Согласно варианту осуществления настоящего изобретения по меньшей мере один из оптических элементов, предпочтительно более 50%, более предпочтительно более 80% оптических элементов представляют собой асферические микролинзы. В значении настоящего изобретения асферические микролинзы обладают непрерывным изменением силы по их поверхности.

Асферическая микролинза может иметь асферичность от 0,1 D до 3 D. Асферичность асферической микролинзы соответствует отношению оптической силы, измеренной в центре микролинзы, к оптической силе, измеренной на периферии микролинзы.

Центр микролинзы можно определить как сферическую область с центром в геометрическом центре микролинзы, имеющую диаметр от 0,1 мм до 0,5 мм, предпочтительно равный 2,0 мм.

Периферию микролинзы можно определить как кольцевую зону с центром в геометрическом центре микролинзы, имеющую внутренний диаметр от 0,5 мм до 0,7 мм и внешний диаметр от 0,70 мм до 0,80 мм.

Согласно варианту осуществления настоящего изобретения асферические микролинзы обладают оптической силой в геометрическом центре, составляющей от 2,0 D до 7,0 D в абсолютном значении, и оптической силой на периферии, составляющей от 1,5 D до 6,0 D в абсолютном значении.

Асферичность асферических микролинз перед покрытием поверхности элемента в виде линзы, на которой располагаются оптические элементы, может изменяться в соответствии с радиальным расстоянием от оптического центра указанного элемента в виде линзы.

Дополнительно, асферичность асферических микролинз после покрытия поверхности элемента в виде линзы, на которой располагаются оптические элементы, может дополнительно изменяться в соответствии с радиальным расстоянием от оптического центра указанного элемента в виде линзы.

Согласно варианту осуществления настоящего изобретения по меньшей мере одна мультифокальная преломляющая микролинза имеет торическую поверхность. Торическая поверхность представляет собой поверхность, которая может быть создана путем вращения окружности или дуги вокруг оси вращения (в конечном счете, расположенной на бесконечности), не проходящей через центр ее кривизны.

Линзы с торической поверхностью имеют два разных радиальных профиля под прямыми углами друг к другу, поэтому они образуют две разные оптические силы.

Компоненты с торической и сферической поверхностью торических линз, в отличие от одноточечного фокуса, образуют астигматический световой пучок.

Согласно варианту осуществления настоящего изобретения по меньшей мере один из оптических элементов, обладающих несферической оптической функцией, например, все оптические элементы, представляет собой торическую преломляющую микролинзу. Например, торическая преломляющая микролинза обладает значением силы сферы, большим или равным 0 диоптрий (δ) и меньшим или равным +5 диоптрий (δ), и значением силы цилиндра, большим или равным 0,25 диоптрии (δ).

В качестве конкретного варианта осуществления торическая преломляющая микролинза может быть абсолютным цилиндром, что означает, что минимальная сила меридиана равна нулю, тогда как максимальная сила меридиана является строго положительной, например меньше чем 5 диоптрий.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов выполнен из двулучепреломляющего материала. Другими словами, оптический элемент выполнен из материала, коэффициент преломления которого зависит от поляризации и направления распространения света. Двулучепреломление можно количественно определить как максимальную разность между показателями преломления, проявляемыми материалом.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов содержит нарушения непрерывности, такие как прерывистая поверхность, например поверхности Френеля, и/или имеет профиль коэффициента преломления с нарушениями непрерывности.

На фиг. 3 представлен пример профиля высоты по Френелю оптического элемента, который может использоваться для настоящего изобретения.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов выполнен из дифракционной линзы.

На фиг. 4 представлен пример радиального профиля дифракционной линзы оптического элемента, который может использоваться для настоящего изобретения.

По меньшей мере одна, например все, из дифракционных линз может содержать метаповерхностную структуру, описанную в документе WO2017/176921.

Дифракционная линза может представлять собой линзу Френеля, фазовая функция которой ψ(r) содержит π скачков фазы на номинальной длине волны, как видно на фиг. 5. Этим структурам можно для ясности дать название «π-линз Френеля» для противопоставления унифокальным линзам Френеля, скачки фазы которых кратны 2π. π-Линзы Френеля, фазовая функция которых изображена на фиг. 5, осуществляют дифракцию света, главным образом, на два порядка дифракции, связанных с диоптрическими силами 0 δ и положительной силой P, например, 3 δ.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов представляет собой мультифокальный бинарный компонент.

Например, бинарная структура, представленная на фиг. 6A, отображает главным образом две диоптрические силы, обозначенные как –P/2 и P/2. В связи с преломляющей структурой, представленной на фиг. 6b, диоптрическая сила которой равна P/2, конечная структура, представленная на фиг. 6c, обладает диоптрическими силами 0 δ и P. Проиллюстрированный случай связан с P=3 δ.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов представляет собой пиксельную линзу. Пример мультифокальной пиксельной линзы раскрыт в «APPLIED OPTICS» от Eyal Ben-Eliezer и соавт., том 44, № 14, от 10 мая 2005 года.

Согласно варианту осуществления настоящего изобретения по меньшей мере один, например все, из оптических элементов обладает оптической функцией с оптическими аберрациями высокого порядка. Например, оптический элемент представляет собой микролинзу, состоящую из непрерывных поверхностей, определяемых полиномами Цернике.

Настоящее изобретение было описано выше при помощи вариантов осуществления без ограничения общей изобретательской концепции.

Множество дополнительных модификаций и изменений станут очевидны специалистам в данной области техники при обращении к приведенным выше иллюстративным вариантам осуществления, приведенным только для примера и не предназначенным для ограничения объема настоящего изобретения, который определяется только приложенной формулой изобретения.

В формуле изобретения термин «содержащий» не исключает другие элементы или этапы, а форма единственного числа не исключает множественное число. Простой факт, что различные признаки перечислены в отличных друг от друга зависимых пунктах формулы изобретения, не означает, что комбинация этих признаков не может быть использована для получения преимущества. Любые ссылочные позиции в формуле изобретения не следует считать ограничивающими объем настоящего изобретения.

1. Элемент в виде очковой линзы, предназначенный для ношения перед глазом человека, содержащий:

- область преломления, обладающую первой преломляющей способностью, основанной на рецепте для коррекции аномального преломления указанного глаза человека, и второй преломляющей способностью, отличной от первой преломляющей способности, так чтобы увеличивать расфокусировку световых лучей;

- множество из по меньшей мере трех оптических элементов, причем по меньшей мере один оптический элемент обладает оптической функцией не фокусировать изображение на сетчатке глаза для того, чтобы замедлить прогрессирование аномального преломления глаза,

при этом область преломления образована как область, отличная от области, образованной множеством оптических элементов.

2. Элемент в виде очковой линзы по п. 1, отличающийся тем, что разница между первой преломляющей способностью и второй преломляющей способностью больше или равна 0,5 D.

3. Элемент в виде очковой линзы по п. 1 или 2, отличающийся тем, что преломляющая область образована как область, отличная от областей, образованных как множество оптических элементов.

4. Элемент в виде очковой линзы по любому из предыдущих пунктов, отличающийся тем, что по меньшей мере один оптический элемент обладает несферической оптической функцией.

5. Элемент в виде очковой линзы по любому из предыдущих пунктов, отличающийся тем, что по меньшей мере один, например все, из оптических элементов обладают оптической функцией фокусировки изображения в положении, отличном от сетчатки.

6. Элемент в виде очковой линзы по любому из предыдущих пунктов, отличающийся тем, что в преломляющей области преломляющая способность характеризуется непрерывной изменчивостью.

7. Элемент в виде очковой линзы по любому из пп. 1-5, отличающийся тем, что в преломляющей области преломляющая способность характеризуется по меньшей мере одним нарушением непрерывности.

8. Элемент в виде очковой линзы по любому из предыдущих пунктов, отличающийся тем, что элемент в виде линзы разделен на пять дополнительных зон: центральную зону, обладающую силой, равной первой преломляющей способности, и четыре квадранта под углом 45°, причем по меньшей мере один из квадрантов обладает преломляющей способностью, равной второй преломляющей способности.

9. Элемент в виде очковой линзы по п. 8, отличающийся тем, что центральная зона содержит исходную точку системы координат, которая обращена к зрачку человека, смотрящего прямо вперeд в стандартных условиях ношения, и имеет диаметр более 4 мм и менее 20 мм.

10. Элемент в виде очковой линзы по п. 8 или 9, отличающийся тем, что по меньшей мере квадрант нижней части обладает второй преломляющей способностью.

11. Элемент в виде очковой линзы по любому из предыдущих пунктов, отличающийся тем, что область преломления обладает диоптрической функцией прогрессивной аддидации.

12. Элемент в виде очковой линзы по любому из пп. 8-10, отличающийся тем, что по меньшей мере один из височного и носового квадрантов обладает второй преломляющей способностью.

13. Элемент в виде очковой линзы по п. 8 или 9, отличающийся тем, что четыре квадранта обладают концентрической прогрессией силы.

14. Элемент в виде очковой линзы по любому из предыдущих пунктов, отличающийся тем, что для каждой круговой зоны, имеющей радиус, составляющий от 2 до 4 мм, с геометрическим центром, расположенным от начала системы координат, обращенного к зрачку носящего, смотрящего прямо в стандартных условиях ношения, на расстоянии, большем или равном сумме указанного радиуса и 5 мм, отношение между суммой площадей частей оптических элементов, расположенных внутри указанной круговой зоны, и площадью указанной круговой зоны составляет от 20 до 70%.

15. Элемент в виде очковой линзы по любому из предыдущих пунктов, отличающийся тем, что по меньшей мере три оптических элемента не являются непрерывными.



 

Похожие патенты:

Элемент в виде линзы, предназначенный для ношения перед глазом, содержит область преломления, обладающую преломляющей способностью, основанной на рецепте для указанного глаза носящего; и множество из по меньшей мере двух непрерывных оптических элементов. По меньшей мере один оптический элемент обладает оптической функцией не фокусировать изображение на сетчатке глаза носящего для того, чтобы замедлить прогрессирование аномального преломления глаза.

Элемент в виде линзы, предназначенный для ношения перед глазом носящего, содержит рецептурную часть, выполненную с возможностью обеспечения носящему в стандартных условиях ношения и для фовеального зрения первой оптической силы на основе рецепта носящего для коррекции аномального преломления указанного глаза носящего; множество из по меньшей мере трех оптических элементов, причем по меньшей мере один оптический элемент обладает оптической функцией не фокусировать изображение на сетчатке глаза в стандартных условиях ношения и для периферического зрения для того, чтобы замедлить прогрессию аномального преломления глаза.

Изобретение относится к медицине, а именно к офтальмологии. Способ лечения нистагма при эзотропии путем очковой коррекции с использованием корригирующих очковых линз, на внутреннюю поверхность стекол которых апплицированы эластичные призмы Френеля (ЭПФ).

Изобретение относится к медицине, а именно к офтальмологии. Способ устранения экзофории, осложненной А-синдромом, включает подбор и использование корригирующих очковых линз, на внутреннюю поверхность стекол которых апплицируют эластичные призмы Френеля (ЭПФ).

Оптическое устройство содержит по меньшей мере одну электроактивную линзу, содержащую слой электроактивного материала, подложки и электродную структуру и выполненную с возможностью приложения напряжения к электроактивному материалу для формирования дублетной фазовой функции, полученной сложением фазовой функции гармонической линзы с фазовой функцией киноформа.

Оптическое устройство содержит по меньшей мере одну электроактивную линзу, содержащую слой электроактивного материала, подложки и электродную структуру и выполненную с возможностью приложения напряжения к электроактивному материалу для формирования дублетной фазовой функции, полученной сложением фазовой функции гармонической линзы с фазовой функцией киноформа.

Способ сборки регулируемого линзового блока включает двухосное растяжение термопластичной эластомерной мембраны до первоначального поверхностного натяжения по меньшей мере 450 Н/м, термическую обработку натянутой мембраны для ускорения ее ослабления до остаточного поверхностного натяжения от 180 Н/м до 550 Н/м, прикрепление обработанной мембраны к периферийной опорной конструкции с одновременным сохранением остаточного поверхностного натяжения, сборку закрепленной мембраны с компонентами с образованием камеры, одну из стенок которой образует обработанная мембрана, и заполняют камеру текучей средой.

Способ сборки регулируемого линзового блока включает двухосное растяжение термопластичной эластомерной мембраны до первоначального поверхностного натяжения по меньшей мере 450 Н/м, термическую обработку натянутой мембраны для ускорения ее ослабления до остаточного поверхностного натяжения от 180 Н/м до 550 Н/м, прикрепление обработанной мембраны к периферийной опорной конструкции с одновременным сохранением остаточного поверхностного натяжения, сборку закрепленной мембраны с компонентами с образованием камеры, одну из стенок которой образует обработанная мембрана, и заполняют камеру текучей средой.

Устанавливаемое на глазу устройство, содержащее первый и второй жесткие полимерные слои и первый жидкокристаллический слой между ними, который имеет обычный и необычный показатели преломления. Показатели преломления первого и второго слоев отличаются менее чем на 0,01.

Изобретение относится к области систем дополненной реальности или виртуальной реальности (AR/VR), а именно к регулировке фокуса изображения в средствах отображения. Устройство отображения для системы AR/VR содержит по меньшей мере один источник изображений виртуальных объектов, по меньшей мере один дисплей для отображения изображений виртуальных объектов и по меньшей мере одну перестраиваемую линзу.

Изобретение относится к силиконовым гидрогелям, имеющим повышенную биосовместимость. Предложен силиконовый гидрогель, образованный из реакционной мономерной смеси, содержащей: гидроксиалкил(мет)акрилатный мономер; силиконовые компоненты, содержащие гидроксильную группу; и полиамид, причем полиамид присутствует в количестве более 15% масс.
Наверх