Способ защиты стали от коррозии в минерализованной водной фазе водно-нефтяных эмульсий

Изобретение относится к области защиты стали от водно-нефтяной сероводородной коррозии и может быть использовано для защиты от коррозии оборудования и трубопроводов, контактирующих с сероводородсодержащими средами в нефтяной отрасли. Способ включает добавление в сероводородсодержащую среду азотсодержащего соединения, при этом в качестве азотсодержащего соединения используют N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилин в концентрации 50-200 мг/л. Технический результат: повышение степени защиты стали до 90,0-96,2 %. 1 табл., 3 пр.

 

Изобретение относится к способу защиты металлов от коррозии в минерализованной водной фазе водно-нефтяных эмульсий ингибиторами и может быть использовано при защите от коррозии оборудования, контактирующего с минерализованной водной фазой водно-нефтяных эмульсий, содержащих сероводород, т.е. в нефтяной отрасли.

Известны способы защиты стали от коррозии в кислых средах с помощью ингибиторов на основе ароматических и гетероциклических соединений, таких как катапины, представляющие собой алкилбензилпиридинийхлориды, отличающиеся числом углеродных атомов в алкильной цепи. Известны следующие марки катапинов: А, К, Б-300, БПВ, ЭПВ (ТУ 6-01-530-70. Введ. 01.06.1971. 13 с.); продукт конденсации бензиламина с уротропином (ТУ 6-02-1192-79. Ингибитор коррозии БА-6. Введ. 01.01.80. 13 с.); смесь алкилбензилпиридина и циклического амина (ТУ 6-46893387-34-90. Ингибитор коррозии КИ-1. Введ. 01.07.90. 12 с.); смесь производных толуилендиизоцианатов (ТУ 6-03-31-81. Ингибитор коррозии ТДА. Введ. 01.02.82. 13 с.); четвертичная соль пиридиния (ТУ 6-01-11-15-72. Ингибитор коррозии КПИ-3. Введ. 01.02.73. 14 с.).

Однако указанные ингибиторы не обладают высокой эффективностью защиты стали в минерализованных водно-нефтяных средах, содержащих сероводород.

Ближайшим аналогом по структуре и эффективности является ингибитор ПБ-5, представляющий собой продукт конденсации анилина и уротропина (ТУ 6-01-28-92. Ингибитор коррозии ПБ-5. Введ. 01.01.93. 11с.).

Недостатком указанного ингибитора является низкая его эффективность в минерализованных водно-нефтяных средах, содержащих сероводород.

Задача, на решение которой направлено заявляемое техническое решение, заключается в повышении эффективности защиты стали в минерализованных водно-нефтяных средах, содержащих сероводород.

В заявленном техническом решении предложен способ защиты стали от коррозии в нефтепромысловых средах, включающий добавление в минерализованную водно-нефтяную среду, содержащую сероводород, N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилина в концентрации 50-200 мг/л.

N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилин получали О-алкенилированием п-аминофенола с использованием 4-хлорпент-2-ена в щелочной среде с последующим N-алкенилированием аллилхлоридом. Испытания защитного действия N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилина в качестве ингибитора коррозии стали в минерализованных водно-нефтяных средах, содержащих сероводород, проводили в лабораторных условиях гравиметрическим методом в соответствии с ГОСТ 9.506-87 «Ингибиторы коррозии металлов водно-нефтяных средах», Издательство стандартов, 1988.

В качестве рабочих сред использовали модель минерализованной воды (ММВ) состава, г/л: NaCI - 163,00; CaCI2⋅6H2O - 34,00; CaSO4⋅2H2O-0.14; MgCI2⋅6H2 - 17.00 и нефть, подготовленная по 1 группе ГОСТ 9965-76, в соотношении 70:30. Содержание сероводорода составляло 1300 мг/л. В качестве образцов-свидетелей использовали пластинки из стали марки 3 (ГОСТ 380-90).

Обезжиренные и высушенные до постоянного веса образцы из стали марки 3 помещали в рабочую среду на 6 часов при 20°С с добавлением предложенного ингибитора и без него. По истечении времени выдерживания образцы тщательно промывали в струе воды, погружали на 5-10 минут в раствор щелочи, вновь промывали проточной водой и сушили до постоянного веса. Далее образцы взвешивали с точностью до 0.0002 г.

Скорость коррозии (р), степень защиты стали от коррозии (Z) определяли в соответствии с формулами (1) и (2)

где m1-m2 - изменение массы, г;

S - площадь образца, м2;

t - время испытания, ч.

где p1 - скорость коррозии в среде без ингибитора, г/м2 ч;

p2 - скорость коррозии в ингибированной среде, г/м2 ч.

Сущность заявленного технического решения подтверждается примерами конкретного выполнения.

Пример 1

Синтез N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилина.

К раствору 1.09 г (0.01 моль) п-аминофенола в 5 мл изопропанола добавляли 0,56 г (0.01 моль) КОН и 0.96 г (0.0092 моль) 4-хлорпент-2-ена. Раствор перемешивали в течение 3 часов при комнатной температуре. В полученный раствор добавляли 5.0 мл триэтиламина и 1,4 г (0.0184 моль) аллилхлорида, далее реакционную массу нагревали до 80°С и выдерживали при этой температуре до полного исчезновения исходного амина, после завершения реакции к смеси добавляли 20 мл воды и продукт экстрагировали эфиром (3x10 мл), органический слой отделяли, промывали водой (3x10 мл) и высушивали над CaCl2, после отгонки эфира продукт выделяли вакуумной перегонкой.

N,N-диаллил-4-{[1-метилбут-2-ен-1-ил]окси}анилин (10). Выход 3.21 г (95.5%). Бурая жидкость. Найдено, %: С 79.30; Н 9.00; N 5.44; C17H23NO. Вычислено, %: С 79.33; Н 9.01; N 5.38. C17H23NO. ИК-спектр (v, см-1): 983, 1683. Спектр ЯМР 1H (CDCl3, δ, м.д. J, Гц): 1.31 д (3Н, СН3, J=1.1), 1.62 д (3Н, СН3, J=2.09), 3.75 д (2Н, СН2, J=15.6), 4.53 м (1Н, ОН), 4.95-5.09 м (2Н, СН2), 5.51-5.56 м (2Н, СН), 5.63-5.75 м (2Н, СН), 6.11-6.65 м (4Н, ArH). Спектр ЯМР 13С (CDCl3, (δ, м.д.): 18.20 (СН3), 20.93 (СН3), 53.21 (2СН2), 76.93 (СН), 115.71 (2ArC). 116.69 (2ArC), 117.01 (2СН2), 126.79 (СН), 130.81 (2СН), 137.75 (СН), 148.94 (ArC), 150.91 (ArC).

Пример 2

Испытания эффективности защитного действия N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилина в качестве ингибитора коррозии стали проводили по вышеописанной методике. В водно-нефтяной смеси с содержанием сероводорода Cн2s=1300 мг/л, скорость коррозии без ингибитора составляет 0.81 г/м2 ч, а в присутствии 200 мг/л N,N-диаллил-4-пентеноксианилина (1) (далее реагента) - 0.036 г/м2 ч. Степень защиты от коррозии в указанных условиях составляет 95.5%.

Пример 3

Испытания эффективности защиты от коррозии прототипом (ингибитор ПБ-5) проводили аналогично примеру 2. Скорость коррозии в водно-нефтяной смеси ММВ:нефть, содержащей сероводород Cн2s=1300 мг/л, составляет 0.81 г/м2 ч без реагента и 0.46 г/м2 ч в присутствии 200 мг/л прототипа. Степень защиты в указанных условиях составляет 42.5%.

В таблице 1 представлены остальные примеры испытания реагента в качестве ингибитора коррозии стали

Результаты испытаний, приведенные в таблице, свидетельствуют о высокой эффективности предлагаемого ингибитора коррозии стали в минерализованной водной фазе водно-нефтяной эмульсии, содержащих сероводород. Наиболее высокая эффективность достигается при концентрации ингибитора от 50 до 200 мг/л. При повышении концентрации ингибитора выше 200 мг/л степень защиты существенно не меняется, а при понижении его концентрации ниже 50 мг/л наблюдается резкое снижение степени защиты. В случае прототипа при концентрации 200 мг/л скорость коррозии составляет 0.47 г/м2 ч, а степень защиты равна 42.0%.

Преимущества предлагаемого ингибитора коррозии стали по сравнению с прототипом состоят в следующем.

1. Высокая степень защиты от коррозии N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилина (1) (86.25-96.2%) по сравнению с прототипом (42.5%).

2. Снижение скорости коррозии стали в присутствии N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилина (1) в 7.3-22.2 раза, а в присутствии прототипа - 1.7 раза.

3. Эффективными дозировками предлагаемого ингибитора являются 50-200 мг/л (степень защиты 86.25-96.2%), а в прототипе даже при дозировках 200 мг/л степень защиты не превышает 42.5%.

Полученные результаты позволяют сделать вывод о высокой эффективности предлагаемого способа защиты стали от коррозии в минерализованной водной фазе водно-нефтяной эмульсии, содержащей сероводород, который может найти применение в нефтяной отрасли.

Способ защиты стали от водно-нефтяной сероводородной коррозии, включающий добавление в сероводородсодержащую среду азотсодержащего соединения, отличающийся тем, что в качестве азотсодержащего соединения используют N,N-диаллил-4-[(1-метилбут-2-ен-1-ил)окси]анилин в концентрации 50-200 мг/л.



 

Похожие патенты:

Изобретение относится к ингибиторам коррозии углеродистых сталей и может быть использовано при организации водно-химического режима пароводяного тракта энергоблока с барабанными котлами, котлами-утилизаторами низкого и среднего давления. Ингибитор включает компоненты при следующем соотношении, мас.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов. Способ включает взаимодействие полиэтиленполиаминов и карбоновых кислот с отгоном реакционной воды и примесей, при этом в качестве полиэтиленполиамина используют пентаэтиленгексамин, который взаимодействует с монокарбоновой кислотой сначала при температуре 145-155°С в течение 4-6 ч, затем при 255-260°С в течение 1,5-2,5 ч в мольном соотношении пентаэтиленгексамин : монокарбоновая кислота, равном 1:2-2,1, с последующим взаимодействием полученного бис-имидазолина с бензилхлоридом при температуре 90°С в мольном соотношении бис-имидазолин на основе пентаэтиленгексамина : бензилхлорид, равном 1:1, или с последующим взаимодействием полученного бис-имидазолина с бензилхлоридом и нитрилом акриловой кислоты при температуре 95°С в мольном соотношении бис-имидазолин на основе пентаэтиленгексамина : бензилхлорид : нитрил акриловой кислоты, равном 1:1,05:1.

Изобретение относится к области теплоэнергетики и может быть использовано на энергоблоках сверхкритического давления для усиления защитных и адгезионных свойств окисных пленок водопарового тракта. Способ включает следующие этапы: 1-2 раза в год перед бустерным насосом энергоблока осуществляют периодическое дозирование водного мицелла-молекулярного раствора стеариламина в течение 5-10 суток в количестве, обеспечивающем концентрацию стеариламина в питательной воде перед котлом 1,5-2,0 мг/дм3, при этом одновременно прекращают штатный ввод газообразного кислорода в период дозирования, при этом работу энергоблока проводят в штатном режиме под нагрузкой при номинальных параметрах.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в высокоминерализованных сероводородсодержащих водных средах, от коррозии, а также к области транспортировки нефти и газа. Способ включает взаимодействие полипропиленполиамина и карбоновой кислоты с отгоном реакционной воды и примесей, при этом в качестве полипропиленполиамина используют тетрапропиленпентамин [(3,6,9,12-тетраметил)-1,4,7,10,13 -пентамино-тридекан], который взаимодействует с монокарбоновой кислотой, в качестве которой используют олеиновую кислоту, сначала при температуре 160°С в течение 5,5 ч, затем при температуре 260°С в течение 2,5 ч в мольном соотношении тетрапропиленпентамин и олеиновая кислота равном 1:2,1 с последующим взаимодействием полученного бис-имидазолина с окисью этилена при температуре 45°С в мольном соотношении бис-имидазолин на основе тетрапропиленпентамина и окись этилена равном 1:1,05.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в высокоминерализованных сероводородсодержащих водных средах, от коррозии, а также при транспортировке нефти и газа. Способ включает взаимодействие полипропиленполиамина и карбоновой кислоты с отгоном реакционной воды и примесей, при этом в качестве полипропиленполиамина используют тетрапропиленпентамин [(3,6,9,12-тетраметил)-1,4,7,10,13-пентамино-тридекан], который взаимодействует с монокарбоновой кислотой, в качестве которой используют олеиновую кислоту, сначала при температуре 160°С в течение 5,5 ч, затем при температуре 260°С в течение 2,5 ч в мольном соотношении тетрапропиленпентамин и олеиновая кислота, равном 1:2,1, с последующим взаимодействием полученного бис-имидазолина с окисью пропилена при температуре 45°С в мольном соотношении бис-имидазолин на основе тетрапропиленпентамина и окись пропилена, равном 1:1,05.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в высокоминерализованных сероводородсодержащих водных средах, от коррозии, а также транспортировки нефти и газа. Способ получения ингибиторов коррозии для нефтепромысловых, минерализованных и сероводородсодержащих сред на основе полипропиленполиаминов и карбоновых кислот с отгоном реакционной воды и примесей, отличающийся тем, что в качестве полипропиленполиамина используют тетрапропиленпентамин [(3,6,9,12-тетраметил)-1,4,7,10,13-пентамино-тридекан], который взаимодействует с монокарбоновой кислотой сначала при температуре 160°С в течение 4-5,5 ч, затем при температуре 255-260°С в течение 2-2,5 ч в мольном соотношении тетрапропиленпентамин:монокарбоновая кислота, равном 1:2-2,1, с последующим взаимодействием полученных бис-имидазолинов с нитрилом акриловой кислоты при температуре 80°С в мольном соотношении бис-имидазолин на основе тетрапропиленпентамина:нитрил акриловой кислоты, равном 1:1,05.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в сероводородсодержащих высокоминерализованных водных средах, от коррозии и наводораживания, и может быть использовано для транспортировки нефти и газа. Способ получения ингибиторов коррозии для нефтепромысловых, минерализованных и сероводородсодержащих сред включает взаимодействие полиэтиленполиамина и карбоновой кислоты с отгоном реакционной воды и примесей, при этом в качестве полиэтиленполиамина используют пентаэтиленгексамин, который взаимодействует с монокарбоновой кислотой сначала при температуре 145-155°С в течение 4-6 ч, затем при 255-260°С в течение 1,5-2,5 ч в мольном соотношении пентаэтиленгексамин : монокарбоновая кислота, равном 1:2-2,1, с последующим взаимодействием полученного бис-имидазолина с нитрилом акриловой кислоты при температуре 85°С.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в сероводородсодержащих высокоминерализованных водных средах, от коррозии и наводораживания, а также транспортировки нефти и газа. Способ включает взаимодействие полиэтиленполиаминов и карбоновых кислот с отгоном реакционной воды и примесей, при этом в качестве полиэтиленполиамина используют пентаэтиленгексамин, который взаимодействует с монокарбоновой кислотой сначала при температуре 145-155°С в течение 4-6 ч, затем при 255-260°С в течение 1,5-2,5 ч в мольном соотношении пентаэтиленгексамин : монокарбоновая кислота, равном 1:2-2,1, с последующим взаимодействием полученного бис-имидазолина с N,N'-диметил-3,5-дитретбутил-4-оксибензиламином - основание Манниха при температуре 116-120°С.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в сероводородсодержащих высокоминерализованных водных средах, от коррозии и наводораживания, а также для транспортировки нефти и газа. Способ включает взаимодействие полиэтиленполиаминов и карбоновых кислот с отгоном реакционной воды и примесей, при этом в качестве полиэтиленполиамина используют тетраэтиленпентамин, который взаимодействует с монокарбоновой кислотой сначала при температуре 145-155°С в течение 4-5,5 ч, затем при 255°С в течение 2 ч в мольном соотношении тетраэтиленпентамин:монокарбоновая кислота, равном 1:2, с последующим взаимодействием полученного бис-имидазолина с нитрилом акриловой кислоты при температуре 80°С.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в сероводородсодержащих высокоминерализованных водных средах, от коррозии и наводораживания, а также при транспортировке нефти и газа. Способ включает взаимодействие полиэтиленполиамина и карбоновой кислоты с отгоном реакционной воды и примесей, при этом в качестве полиэтиленполиамина используют тетраэтиленпентамин, который взаимодействует с монокарбоновой кислотой, в качестве которой используют 2-этилгексановую или олеиновую кислоту, сначала при температуре 145-155°С в течение 4,0-5,5 ч, затем при 255°С в течение 2 ч в мольном соотношении тетраэтиленпентамин : монокарбоновая кислота, равном 1:2, с последующим взаимодействием полученного бис-имидазолина с бензилхлоридом при температуре 90°С.

Изобретение относится к области защиты металлов от коррозии, в частности малоуглеродистой стали в солянокислых средах и может быть использовано при кислотных обработках скважин, отмывке оборудования от минеральных отложений или травлении металлов. Состав для ингибирования кислотной коррозии стали содержит гидрохлорид тиосемикарбазида на полиэтиленполиаминной матрице, полученный конденсацией тиосемикарбазида на полиэтиленполиаминной матрице с легким талловым маслом и последующей обработкой раствором НСl. Техническим результатом является получение нового состава, обеспечивающего эффективную защиту стали от коррозии при контакте металлического оборудования с соляной кислотой. 2 пр.
Наверх