Способ удаления оксидов редкоземельных элементов при переплавке металлического урана

Изобретение относится к области переработки облученного ядерного топлива, в частности пироэлектрохимической технологии переработки облученного ядерного топлива, на стадии переплава металлического урана. Предложен способ переплава металлического урана, содержащего примеси оксидов редкоземельных элементов, в котором в расплав металлического урана, содержащий примеси оксидов редкоземельных элементов, добавляют солевой флюс, выдерживают при температуре от 1200 до 1400°С в течение 3-4 часов до полного растворения оксидов редкоземельных элементов во флюсе, после чего осуществляют отделение солевой фазы от расплава металлического урана путём декантации. В качестве солевого флюса используют эквимольную смесь фторидов кальция и бария CaF2-BaF2 50-50 мол.% или смесь хлорида и фторида кальция CaCl2-CaF2 25-75 мол.%. Изобретение обеспечивает высокую степень очистки металлического урана от редкоземельных элементов за счет уменьшения содержания оксидов редкоземельных элементов в расплаве металлического урана, поступающего на электрорафинирование. 2 табл., 2 пр.

 

Настоящее изобретение относится к области создания неводных методов переработки облученного ядерного топлива (ОЯТ), наиболее перспективными из которых являются пироэлектрохимические процессы, проводимые в расплавленных смесях галоидных солей. После операции восстановления оксидов урана, плутония и некоторых ПД и минорных актинидов до металлического состояния технологическая схема предусматривает переплав металла с целью его компактизации для последующего изготовления анодов для операции электрорафинирования.

Анализ уровня техники в данной области свидетельствует о возможности применения разных солевых составов флюсов в процессе переплава урана. В частности, подтверждена возможность увеличения выхода урана в слиток и снижения содержания неметаллических примесей, главным образом кислорода, в уране при плавке под флюсом при температуре 1200°С. (Lewis Jr. P.S., Agee W.A., Bullock IV J.S., Condon J.B. «Process for electroslag refining of uranium and uranium alloys», US Patent 3895935, 22.07.1975). При переплаве добавляются щёлочноземельные металлы к галогенидным флюсам состава CaF2+Самет. Добавка кальция к флюсу составляет 4-8 %. Существенный недостаток данного метода состоит в том, что присутствие металлического кальция может привести к восстановлению оксидов редкоземельных металлов до металлов при рабочих температурах.

Проблема, решаемая изобретением, заключается в выборе солевого флюса, позволяющего в результате переплава в течение 3-4 часов получать слитки урана более высокого качества, а также проводить очистку от оксидов редкоземельных металлов, которые в процессе плавки будут растворяться в солевом флюсе (шлаке).

Указанная проблема решается тем что, в процессе пирохимической переработки отработавшего ядерного топлива используется способ удаления оксидов редкоземельных элементов при переплавке металлического урана, характеризующийся тем, в расплав металлического урана, содержащий примеси оксидов редкоземельных элементов, добавляют солевой флюс, выдерживают при температуре от 1200 до 1400 градусов цельсия в течение 3-4 часов до полного растворения оксидов редкоземельных элементов во флюсе, после чего осуществляют отделение солевой фазы от расплава металлического урана путём декантации.

При этом в качестве солевого флюса могут использовать эквимольную смесь фторидов кальция и бария CaF2-BaF2 (50-50 мол. %), а также смесь хлорида и фторида кальция CaCl2-CaF2 (25-75 мол. %).

В заявленном способе оксиды редкоземельных элементов из объёма расплавленного урана выделяются на поверхность и контактируют с жидким расплавом фторидного или фторидно-хлоридного флюса, при этом переходят в объём флюса с образованием фтористых соединений (фторидов и оксифторидов) редкоземельных элементов, а флюс отделяется от расплава декантацией.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является уменьшение содержания примесей, таких как оксиды редкоземельных элементов, в расплаве металлического урана, поступающего на электрорафинирование.

Пример 1.

Взят металлический уран, добавлен оксид неодима, обладающий максимальным выходом среди всех редкоземельных продуктов деления, и добавлен флюс состава CaF2-BaF2 (50 мол. %). Температуру переплава варьировали от 1200 до 1400°С. При этом отмечено, что по мере увеличения температуры растёт растворимость оксида неодима в солевом флюсе. Также отмечено, что добавление оксида неодима приводит к снижению температуры плавления для системы CaF2-BaF2 (50-50 мол. %) на 4,5°С. В таблице 1 приведены результаты проведенных экспериментов по определению растворимости оксида неодима в расплаве CaF2-BaF2 (50-50 мол. %) при разных температурах. Растворимость оксидов редкоземельных металлов в расплаве CaF2-BaF2 (50-50 мол. %) при 1200-1400°С составляет 10-30 г/кг соли.

Для исследованной системы получено уравнение температурной зависимости концентрации неодима (в мольных %) в насыщенном расплаве от обратной абсолютной температуры (К-1) в температурном диапазоне 1373-1673 К:

lg[Nd] = 3,1009 - 4640/T (1)

Таблица 1. Результаты экспериментов по определению растворимости оксида неодима в расплаве на основе CaF2-BaF2 (50 мол. %)

расплав (мол. %) Т, °С Концентрация в насыщенном расплаве
Nd, мас. % Nd2O3, мас. %
CaF2-BaF2
(50-50)
1200 0,87 1,01
1300 1,69 1,97
1400 2,47 2,88

Пример 2.

Взят металлический уран, добавлен оксид неодима, обладающий максимальным выходом среди всех редкоземельных продуктов деления, и добавлен флюс состава CaCl2-CaF2 (25-75 мол. %). Температуру переплава варьировали от 1200 до 1400°С. При этом отмечено, что по мере увеличения температуры растёт растворимость оксида неодима в солевом флюсе. Отмечено, что добавление оксида неодима приводит к снижению температуры плавления для системы CaCl2-CaF2 (25-75 мол. %) на 134,11°С. В таблице 2 приведены результаты проведенных экспериментов по определению растворимости оксида неодима в расплаве CaCl2-CaF2 (25-75 мол. %) при разных температурах.

Для исследованной системы получено уравнение температурной зависимости концентрации неодима (в мольных %) в насыщенном расплаве от обратной абсолютной температуры (К-1) в температурном диапазоне 1373-1673 К:

lg[Nd] = 6,5968 - 9651/T (2)

Таблица 2. Результаты экспериментов по определению растворимости оксида неодима в расплаве на основе CaCl2-CaF2 (25-75 мол. %)

расплав
(мол. %)
Т, °С Концентрация в насыщенном расплаве
Nd, мас. % Nd2O3, мас. %
CaCl2-CaF2
(25-75)
1200 2,70 3,15
1300 5,57 4,50
1400 8,36 9,75

Для оценки растворимости диоксида урана в хлоридно-фторидном расплаве была проведена выдержка расплава CaCl2-CaF2 (25-75 мол. %) в контакте с UO2 при 1094°С. Анализ солевой фазы после четырёхчасовой выдержки показал, что содержание урана в расплаве составляло 0,021±0,003 мас. %, что соответствует содержанию диоксида урана

0,023±0,003 мас. % или растворимости UO2 0,023 г/кг расплава. Таким образом, диоксид урана имеет низкую растворимость в расплаве на основе смеси CaCl2-CaF2 (25-75 мол. %).

Растворимость оксидов редкоземельных металлов в расплаве CaCl2-CaF2 (25-75 мол. %) при 1200-1400°С составляет 30-100 г/кг соли.

Таким образом, как видно из приведенных примеров, существует принципиальная возможность удаления оксидов редкоземельных элементов путём добавления флюсов состава CaF2-BaF2 (50-50 мол. %) и CaCl2-CaF2 (25-75 мол. %) при переплавке металлического урана, тем самым обеспечивая высокую степень очистки металлического урана от редкоземельных элементов. Полученный флюс, содержащий фторидные соединения редкоземельных металлов, отделяется от расплава жидкого урана путём декантации.

Способ переплава металлического урана, содержащего примеси оксидов редкоземельных элементов, характеризующийся тем, что в расплав металлического урана, содержащий примеси оксидов редкоземельных элементов, добавляют солевой флюс, выдерживают при температуре от 1200 до 1400°С в течение 3-4 часов до полного растворения оксидов редкоземельных элементов во флюсе, после чего осуществляют отделение солевой фазы от расплава металлического урана путём декантации, причем в качестве солевого флюса используют эквимольную смесь фторидов кальция и бария CaF2-BaF2 50-50 мол.% или смесь хлорида и фторида кальция CaCl2-CaF2 25-75 мол.%.



 

Похожие патенты:

Изобретение относится к металлургии, а именно к способам выплавки никелевых сплавов с высоким содержанием хрома (до 40%), предназначенных для изготовления высоконагруженных деталей с ограниченным сроком службы при температурах до +950°С. Способ выплавки высокохромистого никелевого сплава марки ЭП648-ВИ включает подготовку шихтовых материалов, формирование завалки, выплавку марочного сплава в вакуумной индукционной печи.
Изобретение относится к металлургии, а именно к способу рафинирования титанового материала. Способ рафинирования от кислорода титанового материала, представляющего собой чистый титан, титановый сплав или интерметаллическое соединение, содержащее в качестве одного из основных компонентов титан в количестве 45 мас.% или более.

Изобретение может быть использовано при производстве лопаток турбины турбомашины. Изготавливают лопатку на следующих этапах: a) поддержание интерметаллического сплава на основе титана и алюминия в расплавленном состоянии при помощи плазменной горелки (70) в кольцевой литейной форме (13).

Изобретение относится к мелкодисперсному получению порошка титана. Способ включает активирование исходного материала, гидрирование, измельчение полученного гидрида титана, термическое разложение гидрида титана в вакууме и измельчение образовавшегося титанового спека.
Изобретение относится к сплавам аккумуляторов водорода. Сплав Ni-B с дефектами структуры, который получен путем кристаллизации расплава Ni-B под воздействием импульсного электрического тока, предложено применять в качестве аккумулятора водорода.
Изобретение относится к области металлургии тугоплавких редких металлов, в частности к способу получения чистого ниобия. .
Изобретение относится к технологии производства распыляемых магнетронных мишеней. .
Изобретение относится к процессам и аппаратам для получения кремния высокой чистоты. .

Изобретение относится к способу получения высокочистого никеля для распыляемых мишеней и устройствам для его реализации. .

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых магнетронных мишеней в технологии производства кремниевых интегральных схем в микроэлектронике. .

Изобретение относится к N,N-диалкиламидам формулы (I), которые могут найти применение при переработке отработанного ядерного топлива. В формуле (I) R1 означает линейную алкильную группу, имеющую от 1 до 4 атомов углерода; R2 представляет собой линейную алкильную группу, имеющую от 1 до 10 атомов углерода; R3 означает линейную или разветвленную алкильную группу, имеющую от 6 до 15 атомов углерода; при условии, что R3 отличается от н-октильной, н-децильной, н-додецильной, 2-этилгексильной и 2-этилоктильной группы, когда R1 является н-бутильной группой и R2 означает этильную группу.
Наверх