Способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость

Изобретение относится к области машиностроения. Раскрыт способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость, заключающийся в том, что образец устанавливают в приспособление и проводят термоциклические испытания, с использованием нагревающего элемента при температуре 20-1500°С. При этом дополнительно используют электронно-вычислительную машину, а также устройство машинного зрения, которым осуществляют фотосъемку образца в начале каждого цикла и после выдержки при максимальной температуре, выгружают изображения в электронно-вычислительную машину, при помощи которой в автоматическом режиме сравнивают фотографии образца с образцами, хранящимися в базе данных электронно-вычислительной машины, по ранее проведенным испытаниям, выявляют дефекты теплозащитного покрытия образца, выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Sобр. Изобретение позволяет автоматизировать испытания образцов с покрытиями на термоциклическую стойкость, а также повысить достоверность и точность операции контроля состояния теплозащитного покрытия при испытаниях. 2 ил.

 

Изобретение относится к области машиностроения и может быть использовано при контроле дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость на испытательном стенде.

Известен способ контроля дефекта теплозащитного покрытия при испытаниях на термоциклическую стойкость на испытательном стенде, наиболее близкий к предлагаемому изобретению, и выбранный за прототип является стандарт (ISO 13123, опубл. 15.12.2011), характеризующийся тем, что образец устанавливают в приспособлении, проводят термоциклические испытания путем циклического нагрева-охлаждения образца с использованием нагревающего элемента. При проведении испытаний для оценки и контроля дефекта покрытия используется визуальный контроль или показания датчика измерения акустической эмиссии.

Недостатком данного способа контроля является невысокая точность применяемого метода оценки дефекта покрытия, отсутствие автоматизации измерений, отсутствие возможности оценки динамики деградации покрытия в ходе испытаний.

Технической проблемой при осуществлении прототипа является низкая точность способа контроля, а также сложность реализации способа измерения акустической эмиссии при термоциклических испытаниях.

Технической задачей заявленного изобретения является повышение точности определения дефектов покрытия образца и автоматизация испытаний на термоциклическую стойкость на испытательном стенде.

Техническая проблема решается за счет того, что в способе контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость, заключающемся в том, что образец устанавливают в приспособление, проводят термоциклические испытания с использованием нагревающего элемента при температурах 20-1500°С, включающие нагрев теплозащитного покрытия до температуры Tmax, выдержку при температуре Tmax, охлаждение теплозащитного покрытия до температуры Tmin, выдержку при температуре Tmin, согласно изобретению, дополнительно используют электронно-вычислительную машину (далее ЭВМ), а также устройство машинного зрения, которым осуществляют фотосъемку образца в начале каждого цикла и после выдержки при максимальной температуре, выгружают изображения в ЭВМ, при помощи которой в автоматическом режиме сравнивают изображения образца с образцами, хранящимися в базе данных ЭВМ, по ранее проведенным испытаниям, выявляют дефекты теплозащитного покрытия образца (скол, отслоение, шелушение, вспучивание и др.), выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Soбp.

В предлагаемом изобретении, в отличии от прототипа, применение ЭВМ при контроле состояния теплозащитного покрытия позволяет автоматизировать процесс испытаний, а применение устройства машинного зрения позволят повысить точность измерений и определения дефектов, за счет обработки изображений покрытия образца и сравнения их с базой данных ЭВМ на каждом цикле испытаний образца.

Процесс фотофиксации, а также передачи изображений, может осуществляться с использованием автономного контроллера или непосредственно контроллера стенда. Обработка изображений выполняется специализированным программным обеспечением, установленным на ЭВМ.

База данных может пополняться новыми снимками образцов. Таким образом, обеспечивается обучение системы, повышается точность определения дефекта покрытия.

Допустимое значение дефекта покрытия А, при котором осуществляется останов испытаний, может составлять, например, 20…30% от площади поверхности образца Soбp.

На фиг. 1 - представлен стенд термоциклических испытаний образцов с теплозащитным покрытием.

На фиг. 2 - представлен испытательный цикл для образца.

Способ контроля дефекта теплозащитного покрытия при испытаниях на термоциклическую стойкость реализуется следующим образом (фиг. 1):

Образец с теплозащитным покрытием 1 устанавливают в приспособление 2. Для нагрева образца 1 с фронтальной стороны используют нагревающий элемент 3, например, горелка, плазматрон, лазерный луч и др. Для охлаждения образца 1 с тыльной стороны используют сопло с воздухом 4. Сбор информации и контроль за процессом испытаний осуществляют в ЭВМ 5, включающей в себя персональный компьютер, монитор, контроллер, и установленной в испытательном стенде (без позиции). Цикличность испытаний обеспечивается перемещением нагревающего элемента из зоны нагрева в домашнее положение и обратно перемещающим элементом 6 (траверса, пневмопатрон и др.). Цикл испытаний (фиг. 2) условно разделяется на четыре этапа: а) нагрев теплозащитного покрытия до температуры Tmax, например, 1500°С; б) выдержка от 0 до 60 мин при температуре Tmax; в) охлаждение теплозащитного покрытия до температуры Tmin, например, 20°С; г) выдержка от 0 до 60 мин при температуре Tmin. В начале каждого цикла и после выдержки при максимальной температуре осуществляют фотосьемку образца с использованием устройства машинного зрения, например, камеры 7. Получают два изображения образца с теплозащитным покрытием за один цикл. Передают изображения в ЭВМ 5, в ЭВМ 5 автоматически сравнивают изображения образца с образцами, хранящимися в базе данных ЭВМ по ранее проведенным испытаниям, выявляют дефекты покрытия образца, возникающие в процессе испытаний, выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Soбp.

По заявляемому техническому решению успешно проведены экспериментальные работы, и в настоящее время данный способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость реализован на испытательном стенде предприятия.

Таким образом, выполнение предлагаемого изобретения с вышеуказанными отличительными признаками, в совокупности с известными признаками, позволяет автоматизировать испытания образцов с покрытиями на термоциклическую стойкость, а также повысить достоверность и точность операции контроля состояния теплозащитного покрытия при испытаниях.

Способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость, заключающийся в том, что образец устанавливают в приспособление, проводят термоциклические испытания, включающие нагрев теплозащитного покрытия до температуры Tmax, выдержку при температуре Tmax, охлаждение теплозащитного покрытия до температуры Tmin, выдержку при температуре Tmin, с использованием нагревающего элемента при температуре 20-1500°С, отличающийся тем, что дополнительно используют электронно-вычислительную машину, а также устройство машинного зрения, которым осуществляют фотосъемку образца в начале каждого цикла и после выдержки при максимальной температуре, выгружают изображения в электронно-вычислительную машину, при помощи которой в автоматическом режиме сравнивают фотографии образца с образцами, хранящимися в базе данных электронно-вычислительной машины, по ранее проведенным испытаниям, выявляют дефекты теплозащитного покрытия образца, выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Sобр.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к устройствам для выполнения неразрушающего контроля изделий из полимерных композиционных материалов (ПКМ). Заявлено устройство для инфракрасной термографии полимерных композиционных материалов в среде магнитного поля, которое содержит раму для крепления объекта контроля, на которой размещен штатив с видеокамерой.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЭЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на ЭЛА в наземных условиях. Предложен способ тепловых испытаний элементов летательных аппаратов, который включает нагрев наружной поверхности элементов ЛА, измерение температуры и обдув нагреваемой поверхности газовым потоком вдоль наружной поверхности изделия в сторону носка и в сторону торца элементов летательных аппаратов.

Изобретение относится к средствам неразрушающего контроля качества сквозных металлизированных отверстий (СМО) печатных плат (ПП). Технический результат - повышение достоверности выявления дефектов и в обеспечение возможности их идентификации.

Изобретение относится к области измерительной техники. Заявлена система (200) диагностики трубопровода, которая включает в себя капсулу (206) датчика, измерительную (228) цепь и контроллер (222).

Изобретение относится к области промышленной аэротермодинамики и может быть использовано для исследований аэротермомеханической стойкости материалов и элементов конструкций авиационной и ракетной техники на воздействие высокоэнтальпийных скоростных газовых потоков. Установка содержит как минимум одну камеру сгорания с аэродинамическим соплом, снабженную системой зажигания, систему подачи топлива, подключенную к первому вводу камеры сгорания и включающую, источник топлива, топливную магистраль, первый управляемый клапан, регулятор расхода топлива, первое расходомерное устройство, снабженное соплом, систему подачи кислорода, подключенную к второму вводу камеры сгорания и включающую источник кислорода, кислородную магистраль, регулятор расхода кислорода, второй управляемый клапан, второе расходомерное устройство, снабженное соплом, систему подачи нейтрального газа, включающую магистраль нейтрального газа, источник нейтрального газа, выход которого подключен к входу регулятора давления нейтрального газа, выход которого соединен с параллельно установленными третьим и четвертым управляемыми клапанами, датчики давления, входы первых из которых подключены к полостям расходомерных устройств перед, входы вторых - после установленных в них сопел, блок управления и регистрации, подключенный к соответствующим входам управляемых клапанов, соответствующему входу системы зажигания и выходам датчиков давления.

Изобретение относится к области разрушения материального твердого тела (МТТ) как минимум двумя источниками локального высокоинтенсивного теплового воздействия (ЛВТВ), формирующими область воздействия, состоящую из фигур, выбранных из группы: круг, эллипс, овал, исходя из условий достижения максимального коэффициента концентрации термоупругих напряжений, обусловленных интерференцией волн упругости в данной области, и направлено на обеспечение эффективных режимов источников ЛВТВ на поверхность МТТ для его разрушения, в том числе технических устройств (ТУ), за счет снижения предела прочности материала твердого тела, или снижения несущей способности конструкции технических устройств, выполненных из металлов, сплавов, композиционных материалов, а также оптических и оптико-электронных устройств.

Изобретение относится к области разрушения материального твердого тела (МТТ) как минимум двумя источниками локального высокоинтенсивного теплового воздействия (ЛВТВ), формирующими область воздействия, состоящую из фигур, выбранных из группы: кольцо, рамка, исходя из условий достижения максимального коэффициента концентрации термоупругих напряжений, обусловленных интерференцией волн упругости в данной области, и направлена на обеспечение эффективных режимов источников ЛВТВ на поверхность МТТ для его разрушения, в том числе технических устройств (ТУ), за счет снижения предела прочности материала твердого тела или снижения несущей способности конструкции технических устройств, выполненных из металлов, сплавов, композиционных материалов, а также оптических и оптико-электронных устройств.

Изобретение относится к области разрушения материального твердого тела (МТТ), как минимум, двумя источниками локального высокоинтенсивного теплового воздействия (ЛВТВ), формирующих область воздействия, состоящей из фигур, выбранных из группы: прямоугольник, треугольник, щель, исходя из условий достижения максимального коэффициента концентрации термоупругих напряжений, обусловленных интерференцией волн упругости в данной области, и направлена на обеспечение эффективных режимов источников ЛВТВ на поверхность МТТ для его разрушения, в том числе технических устройств (ТУ), за счет снижения предела прочности материала твердого тела или снижения несущей способности конструкции технических устройств, выполненных из металлов, сплавов, композиционных материалов, а также оптических и оптико-электронных устройств.

Использование: для изготовления эталонного образца (30) из пластмассы, армированной волокном (ПАВ), для моделирования пористости (14) слоя для неразрушающего испытания конструктивных элементов из ПАВ. Сущность изобретения заключается в том, что осуществляют следующие этапы, на которых: i) изготавливают первую часть посредством: а) размещения первого слоя ПАВ с выемкой; b) размещения по меньшей мере одного второго слоя ПАВ на первом слое ПАВ; с) предварительного отверждения структуры из первого и второго слоев из ПАВ для получения первой части; ii) изготавливают вторую часть посредством: а) размещения дополнительных слоев ПАВ; b) предварительного отверждения структуры из дополнительных слоев ПАВ для получения второй части; iii) соединяют первую часть со второй частью, причем выемка на первой части обращена ко второй части; и iv) отверждают структуру из первой части и второй части, причем на выемке в первом слое ПАВ образуется пористость слоя.

Использование: для изготовления эталонного образца из волоконно-пластмассового композита (ВПК) для имитации расслоения для неразрушающего испытания конструктивных элементов из ВПК. Сущность изобретения заключается в том, что осуществляют следующие этапы, на которых: i.

Изобретение относится к области испытаний устройств, в частности к стендам для испытания скользунов вагонных тележек. Стенд содержит стол с системами вертикального и продольного нагружения.
Наверх