Способ получения коррозионностойкого покрытия

Изобретение относятся к способу получения коррозионностойкого покрытия на детали пары трения и может быть использовано в химической, машиностроительной, горно- и нефтедобывающей промышленности, в инструментальном и ремонтном производствах для повышения защитных свойств поверхности инструмента и пар трения в агрессивной среде, а также повышения их теплостойкости при обработке в условиях сухого трения. Проводят очистку детали пары трения в оснастке в тлеющем разряде двух хромовых мишеней в среде аргона. Затем осуществляют ионную очистку детали пары трения двумя дуговыми испарителями с титановыми катодами. Затем без выключения дуговых испарителей с титановыми катодами наносят подслой нитрида титана в среде аргона и азота методом электродугового испарения при отрицательном напряжении смещения на детали пары трения - 180-200 В, давлении 0,4-0,5 Па, токе дуги Ti 80-90 А и расстоянии катод-деталь пары трения 200-220 мм. Затем при отключении дуговых испарителей и использовании двух магнетронов с хромовыми мишенями и двух магнетронов с алюминиевыми мишенями при напряжении смещения на детали пары трения - 80-90 В наносят чередующиеся слои нитрида хрома и алюминия с диаметром кристаллитов 30-50 нм и 60-100 нм в газовой смеси азота и аргона при давлении 0,4-0,5 Па. Осаждение чередующихся слоёв повторяют не менее двух раз и верхним слоем наносят аморфный слой нитрида хрома и алюминия при содержании азота 20-25% в течение не менее 10-15 мин. Нанесение упомянутых слоев нитрида хрома и алюминия проводят на расстоянии от мишеней до детали пары трения, составляющем 160-170 мм, при скорости вращения планетарного механизма, где закреплена деталь пары трения, 20-25 об/мин и температуре детали пары трения 200-250°С. Обеспечивается получение покрытия с высокой коррозионной стойкостью, износостойкостью, ударостойкостью и трещиностойкостью, имеющего высокую адгезионную прочность подслоя с материалом детали пары трения и между слоями. 8 ил.

 

Изобретение относится к способам нанесения коррозионностойких, износостойких, ударостойких и трещиностойких покрытий и может быть использовано в химической, машиностроительной, горно- и нефтедобывающей промышленности, в инструментальном и ремонтном производствах для повышения защитных свойств поверхности инструмента и пар трения в агрессивной среде, в частности в 3% NaCl и 5% NaOH, а также повышения их теплостойкости при обработке в условиях сухого трения.

Известен способ получения покрытия CrAlN совместным распылением бинарной мишени CrAl с соотношением площадей Cr:Al=1:1 (Oscar Mauricio Sánchez Quintero, Willian Aperador Chaparro, Leonid Ipaz. Influence of the Microstructure on the Electrochemical Properties of Al-Cr-N Coatings Deposited by Co-sputtering Method from a Cr-Al Binary Target // Materials Research. 2013; 16(1): 204-214). Покрытие CrAlN нанесено на стальные подложки AISI H13 с помощью реактивной системы совместного распыления магнетрона постоянного тока с бинарной мишенью, состоящей из хрома (99,95%) и алюминия (99,99%) в атмосфере газовой смеси Ar / N2 (90/10). К мишени подавали мощность 40 Вт. Бинарная мишень и подложка были очищены распылением в течение 20 минут перед осаждением покрытия. Буферный слой AlCr толщиной около 100 нм был предварительно нанесен в течение 4 минут, чтобы улучшить адгезию CrAlN к стальной подложке. Во время процесса нанесения покрытия CrAlN в течение 1 часа температура подложки (400°C) и расстояние мишень-подложка (5,0 см) поддерживались постоянными.

Более низкая скорость коррозии и более сильная антикоррозийная защита от коррозии характеризуется, как известно, более положительным потенциалом коррозии Eкор, более низкой величиной плотности тока коррозии iкор и более высоким поляризационным сопротивлением Rп по отношению к аналогичным величинам подложки. Защитная эффективность покрытий оценивается по iкор в зависимости от аналогичных характеристик подложки по формуле Р1=[1-(iкор покр/iкор подл)]*100 [Zhiwei Wu, Zhiyong Cheng, Haiyan Zhang, Zhaojun Xu, Yan Wang, and Fei Zhou. Electrochemical and Tribological Properties of CrAlN, TiAlN, and CrTiN Coatings in Water-Based Cutting Fluid // Journal of Materials Engineering and Performance. 2020. 29(4), с. 2153-2163] и отношениям Р2=Eкор покр / Eкор подл и Р3=Rп покр / Rп подл. Для известного способа соответствуют: Р1=(1-0,000147/0,00329)·100=64%; Р2=-0,321/0,886= - 0,36 и Р3=133000/9040=14,7.

Недостатком известного способа является использование бинарной мишени CrAl с соотношением площадей Cr:Al=1:1 без учета различного давления пара Cr и Al (у Cr (РCr=1,05⋅10-4 г/(см2⋅с) намного большее давление пара, чем у Al (РAl=7,9⋅10-5 г/(см2·с)), что не позволяет управлять элементным составом покрытия в связи с распылением композиционной CrAl. Кроме того, покрытие CrAlN известного способа на основе c-AlN, c-CrN, h-AlN и h-AlN не содержит трехкомпонентной орторомбической 93,135% δ-Cr0,57Al0,43N фазы и гексагональной фазы 1,53% h-Cr2N фаз с наибольшей коррозионной стойкостью.

Наиболее близким к заявляемому способу по совокупности существенных признаков является способ получения коррозионностойкого покрытия, осажденного с использованием технологии HIPIMS, основанном на совместном распылении высокоэнергетических импульсных мишеней CrAl с атомным соотношением двух элементов Cr и Al 3:7 и биполярных импульсных мишеней. Перед осаждением 10 слоев из чередующихся металлического слоя CrAl и керамического слоя CrAlN проводят ионную очистку поверхности подложки из быстрорежущей стали при давлении аргона 2 Па в течение 10 мин при напряжении смещения -1000 В до температуры 400°C. Средняя твердость подложки из быстрорежущей стали - 63 HRC (CN 110241387 А 种基于HIPIMS技术的CrAIN涂层制备方法 (Способ получения покрытия CrAIN на основе технологии HIPIMS).

Время осаждения металлического слоя CrAl и керамического слоя CrAlN, нанесенных друг на друга регулируется до 10 минут, и слои наносятся поочередно; ток мишени ионного покрытия дуги составляет 120 A, а смещение подложки составляет -40 В, без азота при осаждении металлического слоя сплава, скорость потока азота составляет 70 см3/мин при нанесении керамического слоя. Мощность распыления биполярной мишени составляет 8 Вт, мощность распыления высокоимпульсной мишени составляет 8 Вт, напряжение смещения подложки составляет -60 В, расход азота во время нанесения керамического слоя составляет 100 см3/мин.

Для прототипа соответствуют коррозионные свойства покрытия: Р1=(1-0,013/15,7) 100=99,9%; Р2=-0,296/0,33=- 0,90 и Р3=3335/1.7=1962.

Недостатком известного способа, принятого за прототип, является использование металлических промежуточных слоев CrAl с меньшей коррозионной стойкостью по сравнению с CrAlN, что привело к меньшему потенциалу коррозии по сравнению с подложкой. Второй недостаток данного способа - невозможность управления элементным составом покрытия в связи с распылением композиционной CrAl с атомным соотношением двух элементов Cr и Al 3:7. В связи с большим давлением пара Cr по сравнению с Al нет возможности увеличить давление пара Al путем повышения мощности на Al мишени. Покрытие CrAlN, выбранное за прототип, содержит поры, ухудшающие коррозионную стойкость всего покрытия.

Задачей изобретения является получение покрытия с высокими коррозионностойкими, износостойкими, ударостойкими и трещиностойкими свойствами и высокой адгезионной прочностью подслоя с материалом подложки и между слоями.

Поставленная задача была решена за счет того, что в известном способе получения коррозионностойкого покрытия, включающем ионную очистку подложки и нанесение слоев Cr1-xAlxN методом импульсного магнетронного распыления (ИМР), согласно изобретения перед ионной очисткой проводят очистку подложки-инструмента и/или детали в оснастке в тлеющем разряде двух хромовых магнетронов в среде аргона в течение 10-15 мин, давлении в камере 0,4-0,5 Па в среде аргона при напряжении смещения: 800-900 В и токе на магнетроне 1-2 A, ионную очистку проводят двумя дуговыми испарителями с титановыми катодами в течение 5-15 мин при напряжении на подложке: 800-900 В, давлении в вакуумной камере Р=0,5⋅10-3 Па с нагревом подложки до температуры 300-350°С, затем, не выключая дуговые испарители с титановыми катодами, наносят подслой TiN дуговиком в среде аргона и азота методом электродугового испарения при отрицательном напряжении смещения на подложке - 180-200 В, давлении 0,4-0,5 Па, токе дуги Ti 80-90 А, расстоянии катод-подложка 200-220 мм, затем при отключении дуговых испарителей и подаче на все магнетроны тока 7-8 А, напряжения смещения на подложке - 80-90 В наносят чередующиеся слои нитрида хрома и алюминия Cr1-xAlxN с диаметром кристаллитов 30-50 нм и 60-100 нм в газовой смеси азота и аргона при давлении 0,4-0,5 Па и соотношении N2/Ar 5-10/95-90% для формирования кристаллитов с диаметром 30-50 нм и соотношении N2/Ar 15-20/85-80% для формирования кристаллитов с диаметром 60-100 нм при мощности на магнетронах с хромовыми мишенями (NCr) 3,5-4,0 кВт и на магнетронах с алюминиевыми мишенями NAl=3,0-3,2 кВт, при давлении 0,5 Па, скорости вращения сателлитов подложкодержателя с планетарным механизмом V=20-25 об/мин, расстоянии мишень-подложка L=160…170 мм и температуре процесса осаждения 200-250°С, при этом при осаждении слоя Cr1-xAlxN с диаметром кристаллитов 30-50 нм магнетронное распыление проводят при работающих двух хромовых и двух алюминиевых мишенях при содержании азота в вакуумной камере 5-10% в течение не менее 40-50 мин, а при осаждении слоя Cr1-xAlxN с диаметром кристаллитов 60-100 нм магнетронное распыление проводят при содержании азота 15-20% в течение не менее 10-20 мин, причём осаждение чередующихся слоёв повторяют не менее двух раз и верхним наносят аморфный слой Cr1-xAlxN при содержании азота 20-25% в течение не менее 10-15 мин, при этом нанесение всех слоёв проводят на расстоянии от мишеней до подложки 160-170 мм, со скоростью вращения сателлитов планетарного механизма, где закреплены инструмент и/или детали, 20-25 об/мин и температуре подложки 200-250°С.

Слой Cr1-xAlxN имеет нанокристаллическую столбчатую микроструктуру на основе орторомбической 93,135% δ-Cr0,57Al0,43N фазы с минимальным количеством фаз: кубической 5% с-AlN, гексагональной 1,53% h-Cr2N фаз и вюрцитной 0,36% w-AlN увеличивает коррозионную стойкость покрытия.

Использование двух магнетронов с хромовыми мишенями и двух магнетронов с алюминиевыми мишенями с импульсными источниками питания в процессе осаждения чередующихся слоев Cr1-xAlxN позволит увеличить плотность энергии плазмы и получить плотные слои с максимальным защитным эффектом.

Проведение ионной очистки подложки в дуговом разряде позволит создать оптимальные условия для очистки поверхности подложки от остатков загрязнений, распыления окисной пленки, нагрева ее поверхности и повышения в конечном итоге адгезионной прочности покрытия с поверхностью подложки без снижения ее прочностных свойств.

Использование двух дуговых испарителей с титановыми катодами в процессе осаждения подслоя TiN позволит обеспечить высокую адгезию чередующихся слоев Cr1-xAlxN к подложке.

В заявляемом способе (подложка 40Х - подслой TiN- чередующие слои *Cr1-xAlxN(30-50 нм)-Cr1-xAlxN(60-100нм)* - верхний аморфный слой Cr1-xAlxN.

Использование двух дуговых испарителей с титановыми катодами в процессе ионной очистки позволит нагреть подложку до 300-350°С, обеспечить нанометровый слой титана на подложке, снизить напряжения на границе раздела подложка-покрытие, обеспечить оптимальную температуру протекания начальной стадии структурообразования подслоя TiN электродуговым испарителем в равновесных температурных условиях, управлять процессом структурообразования подслоя и гарантировать высокую адгезию подслоя TiN к подложке и первому из чередующихся слоев Cr1-xAlxN, увеличить сопротивляемость покрытия к действию высоких контактных нагрузок.

Многократное (не менее двух раз) чередование слоёв нитрида хрома и алюминия Cr1-xAlxN с различным размером кристаллитов 30-50 нм и 60-100 нм и нанесение верхнего аморфного слоя Cr1-xAlxN позволит сформировать покрытие с высокими коррозионностойкими, износостойкими, ударостойкими и трещиностойкими свойствами и высокой адгезионной прочностью подслоя с материалом подложки и между слоями.

Нанесение слоя нитрида хрома и алюминия Cr1-xAlxN с диаметром кристаллитов 30-50 на в газовой смеси аргона и азота при парциальном давлении 0,4-0,5 Па и соотношении N2/Ar 5-10/95-90% при распыляемых двух хромовых и двух алюминиевых мишенях и создании мощности магнетронного разряда на двух алюминиевых мишенях 3,0-3,2 А и мощности магнетронного разряда на двух хромовых мишенях 3,5-4,0 А в течение не менее 40-50 мин обеспечит образование в Cr1-xAlxN покрытии максимального количества орторомбической 93,135% δ-Cr0,57Al0,43N фазы и 1,53% h-Cr2N фаз, обладающими наиболее высокими коррозионностойкими свойствами, а также верхний аморфный слой Cr1-xAlxN в течение не менее 10-15 мин обеспечит высокие ударостойкие и трещиностойкие свойства, повысит сопротивляемость подложки к воздействию агрессивной среды в связи с образованием на поверхности покрытия при эксплуатации двух прочных оксидных пленок Al2O3 и Cr2O3.

Нанесение верхнего аморфного слоя Cr1-xAlxN и при тех же значениях парциального давления и мощности магнетронного разряда проводят при увеличении содержания азота в газовой смеси до 20-25% и соотношении N2/Ar 15-20/85-80%, что позволит получать слои с улучшенными ударостойкими и трещиностойкими свойствами.

Стабильность поддержания задаваемого рабочего давления 0,4-0,5 Па обеспечивает устойчивую работу магнетронов и стабильное структурное состояние, состав и свойства чередующихся слоев осаждаемого покрытия.

Заявляемые соотношения реакционного и инертного газов в газовой смеси в зависимости от размера кристаллитов поддерживают соотношение δ-Cr0,57Al0,43N, с-AlN, h-Cr2N и w-AlN фаз в слое Cr1-xAlxN и покрытии в целом, постоянное направление преимущественной кристаллографической ориентации кристаллитов покрытия и обеспечит максимальную микротвердость и минимальные внутренние напряжения.

Вращение сателлитов подложкодержателя с планетарным механизмом, где закреплены образцы и/или детали, 20-25 об/мин позволяет получать наноразмерные чередующиеся слои Cr1-xAlxN толщиной 10-20 нм. Нанесение слоёв покрытия на расстоянии от мишеней до подложки 160-170 мм позволит получить требуемую плотность потока пленкообразующих частиц.

При осаждении многослойного покрытия поддерживается температура осаждаемых слоев 200-250°С и тем самым регулируется поверхностная энергия слоев, что приводит к формированию покрытия с контролируемыми структурой и свойствами. Температура 200-250°С позволит использовать способ для упрочнения материалов с низкой температурой отпуска.

Для заявленного способа соответствуют коррозионностойкие свойства покрытия соответствуют: Р1=(1-0,2/14,7)⋅100=99%; Р2=+0,375/0,35=+1,25 и Р3=∞/3.2=неограниченное возрастание при уменьшении частоты, что превосходит защитный эффект аналога и прототипа.

Предлагаемый способ иллюстрируется чертежами, представленными на фиг. 1-8.

На фиг. 1 (поверхность покрытия) и фиг. 2 (излом покрытия) изображен снимок излома покрытия Cr1-xAlxN, полученного известным способом, взятым за прототип.

На фиг. 3 изображен снимок излома покрытия Cr1-xAlxN, полученного известным способом, взятым за аналог.

На фиг. 4 изображен снимок излома слоя Cr1-xAlxN с диаметром кристаллитов 30-50 нм.

На фиг. 5 изображен снимок излома слоя Cr1-xAlxN с диаметром кристаллитов 60-100 нм.

На фиг. 6 изображен снимок излома слоя Cr1-xAlxN с аморфным верхним слоем, увеличивающим коррозионно- и ударостойкость покрытия и предотвращающий растрескивание покрытия (фиг. 7).

На фиг. 8 изображен снимок излома заявляемого многослойного покрытия Cr1-xAlxN.

Способ получения многослойного коррозионностойкого покрытия осуществляют следующим образом.

Подложку (инструмент и/или детали в оснастке) устанавливают на спицы - сателлиты планетарного механизма, расположенного в нижней части вакуумной камеры установки ИМР, оснащенной двумя дуговыми испарителями с катодами из титана ВТ1-0, расположенными в вакуумной камере симметрично относительно подложкодержателя, двумя хромовыми мишенями из хрома марки ЭРХ 99,95-МП и двумя алюминиевыми мишенями из алюминия технической чистоты А98, расположенными в дверце вакуумной камеры в последовательности 2 хромовые мишени - 2 алюминиевые мишени. Магнетроны с хромовой и алюминиевой мишенями расположены рядом друг с другом и работают одновременно.

Проводят очистку подложки-инструмента и/или детали в оснастке в тлеющем разряде двух хромовых магнетронов в среде аргона в течение 10-15 мин, давлении в камере 0,4-0,5 Па в среде аргона при напряжении смещения: 800-900 В и токе на магнетроне 1-2 A.

Проводят ионную очистку подложки двумя дуговыми испарителями с титановыми катодами двумя дуговыми испарителями с титановыми катодами, обеспечивающую термическую активацию и нагрев подложки для обеспечения высокой адгезии к ней покрытия. При этом ионную очистку проводят в течение 5-15 мин при высоком напряжении на подложке: 800…900 В, давлении в вакуумной камере 0,5⋅10-3 Па. Ионную очистку проводят с нагревом подложки до температуры 300-350°С.

Затем, не выключая дуговых испарителей с титановыми катодами, наносят на подложку подслой TiN методом вакуумно-дугового испарения в среде аргона и азота при отрицательном напряжении смещения на подложке - 180-200 В, давлении 0,4-0,5 Па, токе дуги Ti 80-90 А, расстоянии катод-подложка 200-220 мм,

Затем при отключении дуговых испарителей наносят чередующиеся слои нитрида хрома и алюминия Cr1-xAlxN с диаметром кристаллитов 30-50 нм (фиг. 4) и 60-100 нм (фиг. 5) методом ИМР двух хромовых мишеней и двух алюминиевых мишеней при напряжении смещения на подложке - 80-90 В при управлении четырех магнетронов с импульсными источниками питания.

Чередующиеся слои нитрида хрома и алюминия Cr1-xAlxN с диаметром кристаллитов 30-50 нм и 60-100 нм наносят в газовой смеси азота и аргона при давлении 0,4-0,5 Па. Устанавливают мощности на двух магнетронах с Cr мишенью NCr=3,5-4,0 кВт и на двух магнетронах с алюминиевой мишенью NAl=3,0-3,2 кВт, при скорости вращения подложки V=20-25 об/мин. При осаждении слоя Cr1-xAlxN с диаметром кристаллитов 30-50 нм, импульсное магнетронное распыление проводят при работающих хромовой и алюминиевой мишенях при содержании азота 5-10% и вращающейся подложке в течение не менее 40-50 мин. При осаждении слоя Cr1-xAlxN с диаметром кристаллитов 60-100 нм импульсное магнетронное распыление проводят при содержании азота 15-20% в течение не менее 10-20 мин. Осаждение чередующихся слоёв повторяют не менее двух раз. Верхним наносят аморфный слой Cr1-xAlxN в течение не менее 10-15 мин (фиг. 6). Нанесение слоёв проводят на расстоянии от мишеней до подложки 160-170 мм. Наноразмерные слои Cr1-xAlxN получали за счет вращения спиц, с закрепленной на них оснасткой с инструментом и/или деталями, являющихся сателлитами в планетарном механизме подложкодержателя, со скоростью вращения 20-25 об/мин. Температура подложки 200-250°С.

Чередующиеся слои Cr1-xAlxN с контролируемым содержанием алюминия, осаждается на подложку перед осаждением верхнего слоя Cr1-xAlxN.

Свойства нанесенного покрытия контролируются путем измерения механических свойств покрытий методом наноиндентации и адгезионной прочности покрытия с помощью адгезионного теста Роквелла.

Из снимка изломов покрытия (фиг. 8) следует, что покрытие, полученное по заявленному способу, по сравнению с покрытием (фиг. 2), полученным известным способом, взятым за прототип, обладает высокими физико-механическими свойствами, имеет низкий коэффициент трения и высокую адгезионную прочность подслоя с материалом подложки и между слоями.

Преимущество заявляемого способа состоит в том, что он позволяет получить гарантированно заданный состав, структуру и свойства слоев и покрытия в целом.

Способ позволяет управлять структурообразованием покрытия Cr1-xAlxN путем изменения основных технологических параметров осаждения.

Заявляемые технологические режимы позволяют получить многофункциональное покрытие с высокими коррозионностойкими, износостойкими, ударостойкими и трещиностойкими свойствами и высокой адгезионной прочностью подслоя с материалом подложки и между слоями.

Способ получения коррозионностойкого покрытия на детали пары трения, включающий ионную очистку детали пары трения и нанесение слоев нитрида хрома и алюминия методом импульсного магнетронного распыления, отличающийся тем, что перед ионной очисткой проводят очистку детали пары трения в оснастке в тлеющем разряде двух хромовых мишеней в среде аргона в течение 10-15 мин, давлении в камере 0,4-0,5 Па при напряжении смещения 800-900 В и токе на магнетроне 1-2 A, упомянутую ионную очистку детали пары трения проводят двумя дуговыми испарителями с титановыми катодами в течение 5-15 мин при напряжении на детали пары трения 800-900 В, давлении в вакуумной камере Р=0,5⋅10-3 Па с нагревом детали пары трения до температуры 300-350°С, затем без выключения дуговых испарителей с титановыми катодами наносят подслой нитрида титана в среде аргона и азота методом электродугового испарения при отрицательном напряжении смещения на детали пары трения - 180-200 В, давлении 0,4-0,5 Па, токе дуги Ti 80-90 А и расстоянии катод-деталь пары трения 200-220 мм, затем при отключении дуговых испарителей и использовании двух магнетронов с хромовыми мишенями и двух магнетронов с алюминиевыми мишенями при напряжении смещения на детали пары трения - 80-90 В наносят чередующиеся слои нитрида хрома и алюминия с диаметром кристаллитов 30-50 нм и 60-100 нм в газовой смеси азота и аргона при давлении 0,4-0,5 Па, при этом для формирования кристаллитов с диаметром 30-50 нм используют упомянутую газовую смесь в процентном соотношении N2/Ar 5-10/95-90, а для формирования кристаллитов с диаметром 60-100 нм – в процентном соотношении N2/Ar 15-20/85-80, при мощности на магнетронах с хромовыми мишенями 3,5-4,0 кВт и на магнетронах с алюминиевыми мишенями 3,0-3,2 кВт и токе на магнетронах 7-8 А, при этом при осаждении слоя нитрида хрома и алюминия с диаметром кристаллитов 30-50 нм магнетронное распыление проводят при работающих двух хромовых и двух алюминиевых мишенях при содержании азота в вакуумной камере 5-10% в течение не менее 40-50 мин, а при осаждении слоя нитрида хрома и алюминия с диаметром кристаллитов 60-100 нм магнетронное распыление проводят при содержании азота 15-20% в течение не менее 10-20 мин, причём осаждение чередующихся слоёв повторяют не менее двух раз и верхним наносят аморфный слой нитрида хрома и алюминия при содержании азота 20-25% в течение не менее 10-15 мин, при этом нанесение упомянутых слоев нитрида хрома и алюминия проводят на расстоянии от мишеней до детали пары трения, составляющем 160-170 мм, при скорости вращения планетарного механизма, где закреплена деталь пары трения, 20-25 об/мин и температуре детали пары трения 200-250°С.



 

Похожие патенты:

Изобретение относится к способу получения коррозионностойкого покрытия на детали пары трения и может быть использовано в химической, машиностроительной, горно- и нефтедобывающей промышленности, в инструментальном и ремонтном производствах для повышения защитных свойств поверхности инструмента и пар трения в агрессивной среде.

Изобретение относится к способу получения многослойного покрытия на подложке в виде детали пары трения или режущего инструмента и может быть использовано в машиностроительной, горно- и нефтедобывающей промышленности, в инструментальном и ремонтном производствах для упрочнения поверхности инструмента и пар трения.

Изобретение относится к контрольно-измерительной технике, в частности к области методов контроля толщины покрытий в установках электронно-лучевого испарения. Способ непрерывного контроля толщины напыляемой на лопатки керамики заключается в определении толщины напыляемого покрытия по контрольному образцу, размещенному в одной камере с лопатками.

Группа изобретений относится к металлической подложке с защитным от коррозии покрытием, способу ее изготовления и установке для непрерывного вакуумного осаждения указанного покрытия на движущуюся металлическую подложку и может быть использована для изготовления компонентов автомобильного транспортного средства.

Изобретение относится к технике нанесения покрытий, а именно к ионно-плазменным установкам, которые могут быть использованы в качестве средства технологического оснащения при производстве металлорежущих многогранных твердосплавных пластин. Ионно-плазменная установка модифицирования поверхности заготовок для режущих пластин включает рабочую камеру, снабженную системой вакуумирования, подачи и регулирования расхода газа, источники питания и плазмы, подложкодержатели и блок адаптивного управления.

Изобретение относится к технике нанесения покрытий, а именно к ионно-плазменным установкам, которые могут быть использованы в качестве средства технологического оснащения при производстве металлорежущих многогранных твердосплавных пластин. Ионно-плазменная установка модифицирования поверхности заготовок для режущих пластин включает рабочую камеру, снабженную системой вакуумирования, подачи и регулирования расхода газа, источники питания и плазмы, подложкодержатели и блок адаптивного управления.

Изобретение относится к установке для производства текстурированных листов из электротехнической стали. Установка содержит многоступенчатые входные декомпрессионные камеры и многоступенчатые выходные декомпрессионные камеры, которые содержат перегородку, ограничивающую каждую декомпрессионную камеру и имеющую отверстие для прохождения листа, форма которого позволяет текстурированному листу из электротехнической стали свободно проходить через указанное отверстие, и уплотнительные подушки, расположенные на верхней и нижней сторонах отверстия для прохождения листа в перегородке.

Группа изобретений относится к технологии тонких пленок и предназначена для получения покрытий из материалов, которые могут быть использованы в рамках исследования свойств материалов, подверженных активному окислению в атмосфере воздуха, а именно получение данных о чистом материале с минимальным содержанием кислорода.

Изобретение относится к технологии непрерывного осаждения покрытий, сформированных из металла или металлических сплавов. Способ непрерывного осаждения на перемещающуюся подложку покрытий, сформированных, по меньшей мере, из одного металла внутри установки для вакуумного осаждения, содержащей вакуумную камеру, содержит этап, на котором в указанной вакуумной камере металлический пар 5 выбрасывается через по меньшей мере два паровых эжектора 3, 3' в направлении к обеим сторонам перемещающейся подложки, и слой по меньшей мере одного металла формируется с каждой стороны посредством конденсации выбрасываемых паров, причем по меньшей мере два паровых эжектора 3, 3', обращенных друг к другу, расположены по обе стороны от подложки и позиционируются соответственно под углом α и α', находясь между эжектором пара и осью А, перпендикулярной направлению перемещения подложки, ось которой находится в плоскости подложки, α и α' удовлетворяют следующим уравнениям:(D1+D2)+Le sin α + We cos α = Ws и(D1+D2)+Le sin α' + We cos α' = Ws,углы α и α' по абсолютной величине выше 0° и D1 и D2 - меньшее расстояние между эжекторами и каждым краем подложки вдоль оси (A), Ws - ширина подложки, D1 и D2 превышают 0 мм, то есть края эжектора не выходят за края подложки, а упомянутые эжекторы пара имеют прямоугольную или трапециевидную форму и содержат прорезь, а также определяются длиной Le прорези и шириной We прорези, причем упомянутые эжекторы пара имеют одинаковую ось вращения.

Изобретение относится к технологии непрерывного нанесения покрытий из металла или металлического сплава. Способ непрерывного нанесения на движущуюся подложку S покрытий, сформированных по меньшей мере из одного металла, внутри установки 1 для вакуумного осаждения, содержащей вакуумную камеру 2, включает этап, на котором в упомянутой вакуумной камере 2 металлический пар выбрасывают через по меньшей мере один эжектор 3 пара на одну сторону движущейся подложки S1 и на упомянутой стороне формируют слой по меньшей мере из одного металла путем конденсации выброшенного пара, при этом по меньшей мере один эжектор 3 пара расположен под углом α между эжектором 3 пара и осью А, перпендикулярной направлению движения подложки S1, причем ось А находится в плоскости подложки S1, а угол α удовлетворяет следующему уравнению: где α по абсолютному значению больше 0°, D1 и D2 - это наименьшее расстояние между эжектором и каждым краем подложки вдоль оси A, Ws - ширина подложки, D1 и D2 имеют значение более 0 мм, т.е.

Изобретение относится к способу получения коррозионностойкого покрытия на детали пары трения и может быть использовано в химической, машиностроительной, горно- и нефтедобывающей промышленности, в инструментальном и ремонтном производствах для повышения защитных свойств поверхности инструмента и пар трения в агрессивной среде.
Наверх