Способ кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси

Предложенное изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота. Способ кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси включает скоростную подачу струи в гидродинамический генератор, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния, размещенных внутри конусообразного корпуса и последовательно установленных стационарных элементов с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний в гидродинамическом генераторе, на входе которого создают высокоскоростную струю, а для усиления полей первичной гидродинамической и создания вторичной акустической кавитации происходит каскадное перетекание гидросмеси на последовательно установленные по ходу движения потока гидросмеси наклонные поверхности. Высокоскоростная струя из диффузора подается на сочлененные радиусные элементы, жестко закрепленные на крестовине с ребрами кавитации, связанными с крестовиной и опорными балками. Для усиления гидродинамического воздействия на полиминеральную составляющую гидросмеси и получения заданного среднего значения объемной плотности гидродинамического возмущения для обеспечения градиента давления с превышением предела прочности микрочастиц происходит периодическое поступление потока гидросмеси на гладкие наклонные поверхности конусообразных сочлененных элементов, выполненных с обратным конусом, переходящим в прямой конус, и последовательно установленных по периметру конусообразного корпуса - по ходу движения потока гидросмеси - под минимальным углом, для обеспечения минимальных потерь давления на поверхность и усиления дезинтеграции минеральных частиц. Конусообразные сочлененные элементы образуют отверстия для потока гидросмеси, поступающего на плоские поверхности разделителей потока на разных уровнях для усиления осцилляций. Расстояние по высоте между конусообразными сочлененными элементами устанавливается в зависимости от соотношения твердого к жидкому в гидросмеси. Поток гидросмеси поступает в конфузор и по направляющим потока выводится для дальнейшего обогащения гравитационными методами. Устойчивость и жесткость конструктивного выполнения конусообразных сочлененных элементов обеспечивается посредством балок, установленных на всех уровнях, а конусообразного корпуса и конфузора - наружными опорными элементами устойчивости. Технический результат - повышение технологической и эксплуатационной эффективности процесса глубокой дезинтеграции полиминеральной составляющей гидросмеси. 4 ил.

 

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота.

Известен способ газоструйной дезинтеграции материала и устройство для его осуществления на основе принципа струйно-акустического воздействия на материал [1].

Недостатком данного способа является использование энергозатратных систем подачи струи газа и регулировки перемещения струйно-акустического генератора.

Установлены также способы и устройства, осуществляющие генерацию акустических колебаний ультразвукового диапазона в жидкотекучих средах посредством возбуждения потоком жидкости стержней, пластин, мембран или в результате модуляции струи жидкости [2-4].

Основными недостатками данных устройств являются ограничение по технологическим показателям, максимальной развиваемой мощности и производительности систем.

Известны различные системы роторного типа, использующие принцип струйной генерации акустических потоков [5, 6] и различные системы кавитационно-струйной диспергации [7].

Использование этих устройств ограничено пропускной способностью обрабатываемой среды (производительностью по массе), дисперсностью твердой фракции и не пригодно для дезинтеграции гидросмеси с включениями крупнокусковой составляющей с повышенным содержанием глин.

Известен гидродинамический генератор акустических колебаний ультразвукового диапазона и способ создания акустических колебаний ультразвукового диапазона, включающий корпус в виде конусно-цилиндрический трубы с входным и выходным отверстиями и размещенное внутри него препятствие для потока жидкости, которое представляет из себя систему, состоящую из последовательно соединенных плохо обтекаемого тела, стержня и диска, установленных соосно с трубой [8].

Данный способ основан на создании резонансных акустических явлений в гидропотоке посредством системы стационарных кавитационных элементов, однако конструктивное выполнение стационарных излучателей не выдержит давления потока песково-глинистых гидросмесей и не обеспечит дезинтеграцию минеральных составляющих в пульпе.

Известны способы струйно-акустической дезинтеграции минеральной составляющей гидросмеси, включающие скоростную подачу струи в гидродинамический генератор, обработку материала в условиях активных гидродинамических воздействий посредством влияния, размещенных внутри корпуса и последовательно установленных стационарных элементов, с обеспечением глубокой дезинтеграции минеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний в гидродинамическом генераторе, на входе которого создают высокоскоростную струю [9-10].

Данные способы основаны на создании резонансных акустических явлений в гидропотоке посредством системы кавитационных элементов и обеспечивают износостойкость элементов в условиях повышенных гидродинамических нагрузок, однако, для увеличения гидродинамического давления потока конструкции требуют доработки, а также - для увеличения необходимого срока службы генераторов потребуются дополнительные затраты.

Наиболее близким по технической сущности является способ кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси, включающий скоростную подачу струи в гидродинамический генератор, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния, размещенных внутри конусообразного корпуса и последовательно установленных стационарных элементов с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний в гидродинамическом генераторе, на входе которого создают высокоскоростную струю, а для усиления полей первичной гидродинамической и создания вторичной акустической кавитации происходит каскадное перетекание гидросмеси на последовательно установленные по ходу движения потока гидросмеси наклонные поверхности [11].

Данный способ основан на создании резонансных акустических явлений в гидропотоке посредством системы кавитационных элементов генератора, однако, для увеличения необходимого срока службы генератора потребуются дополнительные затраты.

Технический результат предлагаемого способа заключается в повышении технологической и эксплуатационной эффективности процесса глубокой дезинтеграции полиминеральной составляющей гидросмеси на основе использования конструктивных особенностей системы, в том числе с обеспечением жесткости и износостойкости при образовании кавитационных и гидродинамических эффектов.

Технический результат достигается за счет того, что в способе кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси, включающем скоростную подачу струи в гидродинамический генератор, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния, размещенных внутри конусообразного корпуса и последовательно установленных стационарных элементов с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний в гидродинамическом генераторе, на входе которого создают высокоскоростную струю, а для усиления полей первичной гидродинамической и создания вторичной акустической кавитации происходит каскадное перетекание гидросмеси на последовательно установленные по ходу движения потока гидросмеси наклонные поверхности, высокоскоростная струя из диффузора подается на сочлененные радиусные элементы, жестко закрепленные на крестовине с ребрами кавитации, связанными с крестовиной и опорными балками, при этом для усиления гидродинамического воздействия на полиминеральную составляющую гидросмеси и получения заданного среднего значения объемной плотности гидродинамического возмущения для обеспечения градиента давления с превышением предела прочности микрочастиц происходит периодическое поступление потока гидросмеси на гладкие наклонные поверхности конусообразных сочлененных элементов, выполненных с обратным конусом, переходящим в прямой конус, и последовательно установленных по периметру конусообразного корпуса - по ходу движения потока гидросмеси - под минимальным углом, для обеспечения минимальных потерь давления на поверхность и усиления дезинтеграции минеральных частиц, при этом конусообразные сочлененные элементы образуют отверстия для потока гидросмеси, поступающего на плоские поверхности разделителей потока на разных уровнях для усиления осцилляций, при этом расстояние по высоте между конусообразными сочлененными элементами устанавливается в зависимости от соотношения твердого к жидкому в гидросмеси, при этом поток гидросмеси поступает в конфузор и по направляющим потока выводится для дальнейшего обогащения гравитационными методами, причем устойчивость и жесткость конструктивного выполнения конусообразных сочлененных элементов обеспечивается посредством балок, установленных на всех уровнях, а конусообразного корпуса и конфузора - наружными опорными элементами устойчивости.

Возможность формирования требуемой последовательности выполняемых действий предложенными средствами позволяет решить поставленную задачу, определяет новизну, промышленную применимость и изобретательский уровень разработки.

Гидродинамический генератор изображен на чертежах: на фиг. 1 - общий вид гидродинамического генератора; на фиг. 2 - разрез А-А на фиг. 1, без стенок диффузора и наружных опорных элементов устойчивости; на фиг. 3 - разрез Б-Б на фиг. 1, плоские поверхности разделителей потока; на фиг. 4 - разрез В-В на фиг. 1, изображен один из вариантов расположения балок, поддерживающих конусообразные сочлененные элементы на уровне соединения обратного конуса с прямым конусом.

Способ выполняется с помощью гидродинамического генератора 1, который включает диффузор 2, конусообразный корпус 3, стационарные элементы 4. На входе 5 гидродинамического генератора 1 создают высокоскоростную струю. В диффузоре 2 размещены сочлененные радиусные элементы 6, жестко закрепленные на крестовине 7 с ребрами кавитации 8. Ребра кавитации 8 связанны с крестовиной 7 и опорными балками 9. По периметру 10 конусообразного корпуса 3 - по ходу движения 11 потока гидросмеси - последовательно установлены конусообразные сочлененные элементы 12 с наклонными поверхностями 13. Наклонные поверхности 13 образуют минимальный угол 14 и выполнены в виде гладких наклонных поверхностей 15 конусообразных сочлененных элементов 12. Конусообразные сочлененные элементы 12 выполнены с обратным конусом 16, переходящим в прямой конус 17. Конусообразные сочлененные элементы 12 образуют отверстия 18 для потока гидросмеси, поступающего на плоские поверхности 19 разделителей потока 20 на разных уровнях 21. Расстояние по высоте 22 между конусообразными сочлененными элементами 12 устанавливается в зависимости от соотношения твердого к жидкому в гидросмеси. Конусообразные сочлененные элементы 12 связаны с балками 23, 24, установленными на всех уровнях 21. Конфузор 25 снабжен направляющими потока 26. Конусообразный корпус 3 и конфузор 25 снабжены наружными опорными элементами устойчивости 27.

Способ кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси выполняется следующим образом.

Способ кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси включает скоростную подачу струи в гидродинамический генератор 1, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния, размещенных внутри конусообразного корпуса 3 и последовательно установленных стационарных элементов 4 с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний в гидродинамическом генераторе 1. На входе 5 гидродинамического генератора 1 создают высокоскоростную струю, а для усиления полей первичной гидродинамической и создания вторичной акустической кавитации происходит каскадное перетекание гидросмеси на последовательно установленные по ходу движения 11 потока гидросмеси наклонные поверхности 13. Высокоскоростная струя из диффузора 2 подается на сочлененные радиусные элементы 6, жестко закрепленные на крестовине 7 с ребрами кавитации 8, связанными с крестовиной 7 и опорными балками 9. Для усиления гидродинамического воздействия на полиминеральную составляющую гидросмеси и получения заданного среднего значения объемной плотности гидродинамического возмущения для обеспечения градиента давления с превышением предела прочности микрочастиц происходит периодическое поступление потока гидросмеси на гладкие наклонные поверхности 15 конусообразных сочлененных элементов 12, выполненных с обратным конусом 16, переходящим в прямой конус 17 и последовательно установленных по периметру 10 конусообразного корпуса 3 - по ходу движения 11 потока гидросмеси - под минимальным углом 14, для обеспечения минимальных потерь давления на поверхность и усиления дезинтеграции минеральных частиц. Конусообразные сочлененные элементы 12 образуют отверстия 18 для потока гидросмеси, поступающего на плоские поверхности 19 разделителей потока 20 на разных уровнях 21 для усиления осцилляций. Расстояние по высоте 22 между конусообразными сочлененными элементами 12 устанавливается в зависимости от соотношения твердого к жидкому в гидросмеси. Поток гидросмеси поступает в конфузор 25 и по направляющим потока 26 выводится для дальнейшего обогащения гравитационными методами. Устойчивость и жесткость конструктивного выполнения конусообразных сочлененных элементов 12 обеспечивается посредством балок 23, 24, установленных на всех уровнях 21, а конусообразного корпуса 3 и конфузора 25 - наружными опорными элементами устойчивости 27.

Предлагаемый способ дезинтеграции минеральной составляющей гидросмеси с использованием кавитационных эффектов повысит технологический уровень добычи полезного ископаемого, уменьшит энергозатраты, улучшит эксплуатационные показатели по обслуживанию комплекса, повысит рентабельность производства и экологическую безопасность за счет снижения или полного исключения из технологического цикла использование реагентов.

Источники информации

1. Патент №2425719 RU, МПК В03В 5/02. Способ газоструйной дезинтеграции материала и устройство для его осуществления. - опубл. 10.08.2011. Бюл. №22.

2. Агранат Б.А. Основы физики и техники ультразвука / Б.А. Агранат, М.Н. Дубровин, Н.Н. Хавский, Г.И. Эскин. - М.: Высш. шк., 1987. - 352 с.

3. Патент №2015749 RU, МПК В06В 1/20, F15B 21/12. Гидродинамический генератор колебаний. - опубл. 15.07.1994.

4. Патент №2229947 RU, МПК В06В 1/20. Способ глубокой обработки жидких и газообразных сред и генератор резонансных колебаний для его осуществления. - опубл. 10.06.2004.

5. Промтов М.А. Пульсационные аппараты роторного типа: теория и практика: Монография. М.: Машиностроение - 1, 2001. - 260 с. ISBN 5-99275-006-8.

6. Балабышко A.M., Юдаев В.Ф. Роторные аппараты с модуляцией потока и их применение в промышленности. - М.: Недра, 1992. - с.: 176 ил. ISBN 5-247-02380-3.

7. Федоткин И.М., Немчин А.Ф. Использование кавитации в технологических процессах. - Киев.: Вища школа. Изд-во Киев. Ун-те, 1984, - 68 с. с. 52, рис. 22.

8. Патент №2325959 RU, МПК В06В 1/18. Гидродинамический генератор акустических колебаний ультразвукового диапазона и способ создания акустических колебаний ультразвукового диапазона. - опубл. 10.06.2008. Бюл. №16.

9. Хрунина Н.П. Патент №2506127 RU, МПК В03В 5/00. Способ струйно-акустической дезинтеграции минеральной составляющей гидросмеси и гидродинамический генератор акустических колебаний. Опубл. 10.02.2014. Бюл. №4.

10. Хрунина Н.П. Патент №2634148 RU, МПК В03В 5/00. Способ кавитационно-гидродинамической дезинтеграции минеральной составляющей гидросмеси. Опубл. 24.10.2017. Бюл. №30.

11. Хрунина Н.П. Патент №2744057 RU, МПК В03В 5/02. Способ кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси. Опубл. 02.03.2021. Бюл. №7.

Способ кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси, включающий скоростную подачу струи в гидродинамический генератор, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния, размещенных внутри конусообразного корпуса и последовательно установленных стационарных элементов с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний в гидродинамическом генераторе, на входе которого создают высокоскоростную струю, а для усиления полей первичной гидродинамической и создания вторичной акустической кавитации происходит каскадное перетекание гидросмеси на последовательно установленные по ходу движения потока гидросмеси наклонные поверхности, отличающийся тем, что высокоскоростная струя из диффузора подается на сочлененные радиусные элементы, жестко закрепленные на крестовине с ребрами кавитации, связанными с крестовиной и опорными балками, при этом для усиления гидродинамического воздействия на полиминеральную составляющую гидросмеси и получения заданного среднего значения объемной плотности гидродинамического возмущения для обеспечения градиента давления с превышением предела прочности микрочастиц происходит периодическое поступление потока гидросмеси на гладкие наклонные поверхности конусообразных сочлененных элементов, выполненных с обратным конусом, переходящим в прямой конус, и последовательно установленных по периметру конусообразного корпуса - по ходу движения потока гидросмеси - под минимальным углом, для обеспечения минимальных потерь давления на поверхность и усиления дезинтеграции минеральных частиц, при этом конусообразные сочлененные элементы образуют отверстия для потока гидросмеси, поступающего на плоские поверхности разделителей потока на разных уровнях для усиления осцилляций, при этом расстояние по высоте между конусообразными сочлененными элементами устанавливается в зависимости от соотношения твердого к жидкому в гидросмеси, при этом поток гидросмеси поступает в конфузор и по направляющим потока выводится для дальнейшего обогащения гравитационными методами, причем устойчивость и жесткость конструктивного выполнения конусообразных сочлененных элементов обеспечивается посредством балок, установленных на всех уровнях, а конусообразного корпуса и конфузора - наружными опорными элементами устойчивости.



 

Похожие патенты:

Предложенное изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота. В способе кавитационно-гидродинамической микродезинтеграции полиминеральной составляющей гидросмеси высокоскоростная струя из диффузора подается на верхнюю наклонную поверхность, выполненную со смещением относительно оси - над уровнем нижележащей наклонной поверхности - конусообразного края и кавитационными наклонными порожками, установленными по всей наклонной поверхности поперек потока гидросмеси для расслоения потока гидросмеси и усиления осцилляций.

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых и при переработке золошлаковых отходов. Способ инициирования кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси включает скоростную подачу струи в гидродинамический генератор, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния размещенных внутри гидродинамического генератора пакетов подвижных упругих пластинчатых кавитационных элементов со щелеобразными промежутками.

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота, а также при переработке золошлаковых отходов, содержащих самородное золото, платину и серебро.

Изобретение относится к обогатительному оборудованию и предназначено для дезинтеграции и промывки песков и руд, включающих глинистую составляющую. Устройство для обогащения полезных ископаемых содержит загрузочный бункер, несущую раму, на которой установлен с возможностью осевого вращения цилиндрический корпус, состоящий из последовательно расположенных по его длине дезинтегрирующего, сеющего и разгрузочного ставов, систему подачи воды, измельчающие элементы, закрепленные на внутренней поверхности дезинтегрирующего става, и разгрузочный лоток.

Изобретение относится к области рудоподготовки и обогащению полезных ископаемых, преимущественно к устройствам для промывки сильно загрязненных глинистыми примесями материалов и удаления окисных пленок, и может быть использовано также для получения гомогенных смесей в химической, строительной и других отраслях промышленности.

Изобретение относятся к горнодобывающей промышленности, а именно к обогащению полезных ископаемых, и может быть использовано для разделения минеральных частиц по плотности в переменных центробежных полях при обработке золотосодержащих концентратов промывочных приборов и драг на шлихообогатительных фабриках, а также на золотоизвлекательных фабриках.

Изобретение относится к горнодобывающей промышленности, а именно к обогащению полезных ископаемых, и может быть использовано для разделения минеральных частиц по плотности в переменных центробежных полях, преимущественно гравитационных концентратов руд и песков благородных и драгоценных металлов. Центробежный концентратор для обогащения полезных ископаемых включает раму, питающее и разгрузочное приспособления, чашу в виде усеченного конуса, жестко смонтированную на валу, который одним концом установлен на раме шарнирно с исключением вращения чаши вокруг собственной оси, а на другом конце вала установлен подшипник и входящий в него штифт, жестко связанный через водило, имеющее паз для регулирования угла наклона, с приводным валом, придающим чаше движение по круговому конусу.

Изобретение относится к переработке волокнистых материалов и может быть использовано в асбестовой и целлюлозно-бумажной промышленности. Гидроклассификатор включает корпус, расположенное вдоль корпуса просеивающее приспособление, установленные у противоположных по диагонали углов корпуса в его продольном сечении патрубки ввода воды и вывода мелкой фракции, расположенные у других противоположных по диагонали углов корпуса в его продольном сечении патрубки ввода и выпуска суспензии, вибратор.

Изобретение относится к установке для очистки загрязненного сыпучего материала. Мобильная установка для очистки загрязненного сыпучего материала содержит приемное и транспортировочное устройство для приема и транспортировки загрязненного сыпучего материала внутри установки, механическое разделительное устройство для механического отделения сыпучего материала и/или шлама от загрязнений, состоящее из подающего и смешивающего устройства для подачи зерен заполнителя и воды к загрязненному сыпучему материалу и их перемешивания, просеивающее устройство с качающимся ситом для отделения крупнозернистых составных частей, прежде всего зерен заполнителя, центрифугу для отделения загрязнений от сыпучего материала, классификатор в восходящем потоке для выноса в восходящем потоке отделенных взвешенных частиц из сыпучего материала, обезвоживающее средство для разделения очищенного сыпучего материала и содержащейся в нем воды, генератор водяного пара, обрабатывающий сыпучий материал водяным паром.

Группа изобретений относится к области химического или гравитационного извлечения полезных компонентов и может быть использована в химической, горно-металлургической, строительной и других отраслях промышленности при проведении процессов, например, противоточного растворения, выщелачивания, отмывки или разделения по тонкодисперсным фракциям минерального сырья, металлургических порошков.
Наверх