Алгоритм управления нагрузкой для оптимизации кпд двигателя

Системы и способы эксплуатации группы генераторов, выполненных с возможностью подачи мощности на двигатель или двигатели. Генераторы в целом работают при разных уровнях КПД в зависимости от рабочей производительности. Вычислительный компонент может анализировать текущий КПД генераторов и определять, есть ли альтернативное распределение мощности среди существующих генераторов, которое привело бы к более эффективной работе системы. 3 н. и 18 з.п. ф-лы, 6 ил.

 

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ

[0001] Настоящая заявка основана на предварительной заявке США № 15/903417, поданной 23 февраля 2018 г., и испрашивает приоритет по указанной заявке, содержание которой полностью включено в настоящий документ посредством ссылки.

УРОВЕНЬ ТЕХНИКИ

[0002] Операции по бурению на нефть и газ требуют значительного количества мощности и контроля этой мощности. В обычной буровой установке используются генераторы, которые потребляют топливо и вырабатывают механическую и электрическую мощность, которая затем используется для эксплуатации буровой установки. При самом бурении потребляется значительная часть мощности, необходимой на буровой установке, но есть много других компонентов, все из которых учитываются. Эффективное управление вырабатываемой и потребляемой мощностью - постоянная задача для буровых работ.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0003] В настоящем документе описаны различные признаки настоящего изобретения. Варианты осуществления относятся к системе, содержащей набор генераторов, который содержит множество отдельных генераторов и выполнен с возможностью распределения нагрузки среди генераторов. Отдельные генераторы имеют рабочую производительность и рабочий КПД. Рабочий КПД представляет собой функцию от рабочей производительности, а отношение КПД к производительности представляет собой отношение рабочей производительности и рабочего КПД. Система также содержит один или более двигателей, выполненных с возможностью потребления мощности, вырабатываемой генераторами, за счет приложения нагрузки к набору генераторов, и вычислительный компонент, выполненный с возможностью сохранения данных, касающихся отношения КПД к производительности для генераторов. Вычислительный компонент выполнен с возможностью вычисления общего КПД набора генераторов, определения доступности альтернативной мощностной конфигурации, в которой рабочая производительность одного или более генераторов изменяется, и вычисления ожидаемого изменения общего КПД, связанного с альтернативной мощностной конфигурацией. Если ожидаемое изменение общего КПД достаточно высокое, вычислительный компонент выполнен с возможностью задействования альтернативной мощностной конфигурации.

[0004] Дополнительные варианты осуществления относятся к способу эксплуатации энергоблока буровой установки, включающему вычисление КПД набора генераторов, используемого для подачи мощности на буровую установку, причем набор генераторов содержит один или более отдельных генераторов, и, если КПД набора генераторов ниже заданного желаемого порогового значения КПД, нахождение альтернативного распределения мощности для набора генераторов. Способ также включает вычисление КПД альтернативного распределения мощности для набора генераторов, и, если КПД альтернативного распределения мощности для набора генераторов выше заданного желаемого порогового значения КПД, инициацию изменения альтернативного распределения мощности для набора генераторов.

[0005] Еще одни варианты осуществления настоящего изобретения относятся к способу эксплуатации генератора, включающему измерение выходной мощности, потребление топлива и рабочую производительность на множестве генераторов. Генераторы выполнены с возможностью совместной работы для подачи мощности для двигателя. Способ также включает вычисление рабочего КПД для каждого генератора по меньшей мере частично на основании выходной мощности, потребления топлива и рабочей производительности каждого генератора, а также передачу вычисленного рабочего КПД с помощью вычислительного компонента. Способ дополнительно включает прием команды от вычислительного компонента для изменения нагрузки, включения или выключения одного или более генераторов в ответ на команду.

[0006]

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[0007] На фиг. 1 показано схематическое изображение архитектуры средств автоматизации двигателя буровой системы согласно вариантам осуществления настоящего изобретения.

[0008] На фиг. 2 показан график применения генератора согласно системам и способам настоящего изобретения.

[0009] На фиг. 3 показан другой график применения генератора согласно системам и способам настоящего изобретения.

[0010] На фиг. 4 показана блок-схема способа эффективной эксплуатации генераторной системы согласно вариантам осуществления настоящего изобретения.

[0011] На фиг. 5 показана другая блок-схема способа эффективной эксплуатации генераторной системы согласно вариантам осуществления настоящего изобретения.

[0012] На фиг. 6 показана иллюстративная компьютерная архитектура для компьютера, используемого в различных вариантах осуществления.

ПОДРОБНОЕ ОПИСАНИЕ

[0013] Ниже приведено подробное описание в соответствии с различными вариантами осуществления настоящего изобретения. На фиг. 1 показано схематическое изображение архитектуры средств автоматизации двигателя буровой системы 10 согласно вариантам осуществления настоящего изобретения. Система 10 может представлять собой буровую установку или другое аналогичное оборудование, содержащее компоненты, описанные в настоящем документе, и не ограниченное нефтегазовой областью. Система 10 содержит генераторы, показанные как G1, G2, G3 и G4, хотя может быть предусмотрено любое количество генераторов 12 в данной системе. Генераторы 12 потребляют топливо и вырабатывают электрическую мощность и могут совместно называться набором 12 генераторов. Генераторы соединены с шиной 14 переменного тока (AC), которая помогает собрать мощность, вырабатываемую генераторами, и передать эту мощность в другое место. Система 10 может содержать выпрямители 16, которые выполнены с возможностью преобразования электрической мощности из переменного тока в постоянный ток (DC). Выпрямители 16 также соединены с шиной 18 постоянного тока, по которой передается мощность постоянного тока по системе 10 для доставки к различным устройствам на буровой установке.

[0014] Система 10 также может содержать множество частотно-регулируемых приводов (англ. - variable frequency drives, VFD) 20, показанных как VFD1, VFD2, VFD3 и VFD4. Следует понимать, что может быть предусмотрено любое количество VFD в данной системе. VFD 20 принимают электрическую мощность от шины 18 постоянного тока и доставляют мощность на группу двигателей 22, показанных как M1, M2, M3 и M4. Опять-таки, может быть предусмотрено большее или меньшее количество двигателей, чем показано на фиг. 1, и аспекты настоящего изобретения не ограничены количеством компонентов, показанных и описанных в настоящем документе. Двигатели 22 потребляют электрическую мощность, принятую от VFD 20, которая была сначала была сгенерирована генераторами. Двигатели 22 могут представлять собой верхний привод или буровой насос, используемые при буровых работах, или они могут представлять собой любой другой потребляющий мощность компонент буровой установки, от устройств HVAC (отопления, вентиляции и кондиционирования воздуха) и освещения до приводных инструментов на полу буровой установки. Генераторы 12 могут удовлетворить практически любую потребность буровой установки.

[0015] Система 10 также содержит вычислительный компонент 26, который, в некоторых вариантах осуществления, функционально соединен с набором 12 генераторов, с VFD 20 и с двигателями 22. В других вариантах осуществления вычислительный компонент 26 соединен с генераторами, VFD 20 или двигателями 22, или любой их комбинацией. Генераторы могут содержать измерительные приборы и датчики, которые подают показания на вычислительный компонент 26, например, показания уровня мощности, показания производительности, показания температуры и любое другое подходящее показание из набора 12 генераторов. VFD 20 и двигатели 22 также могут содержать измерительные приборы, датчики и диагностическое оборудование, выполненное с возможностью передачи данных, относящихся к работе этих устройств, на вычислительный компонент 26. Вычислительный компонент 26 в некоторых вариантах осуществления выполнен с возможностью опроса различных компонентов системы 10, когда такая информация необходима для вычисления. В некоторых вариантах осуществления генераторы 12, VFD 20 и двигатели 22 выполнены с возможностью периодической передачи показаний на вычислительный компонент 26. Любой один или более из генераторов, VFD 20 и двигателей 22 может быть соединен посредством линий 23 связи с вычислительным компонентом. Линии 23 связи могут быть проводными или беспроводными, и могут представлять собой линию связи Ethernet, Bluetooth, WIFI или любую другую подходящую линию связи.

[0016] Система 10 также содержит терминал 24, который позволяет оператору просматривать информацию о системе 10 и делать запросы относительно состояния одного или более компонентов системы 10. Например, оператор, такой как оператор на буровой установке, может осуществлять доступ к терминалу 24 и запрашивать состояние двигателя M1 и генератора G1 посредством интерфейса на терминале 24. Эта информация может позволять оператору вносить корректировки в систему 10, при необходимости, согласно заданному плану бурения или на основании решения оператора.

[0017] Множество генераторов, например, генераторов системы 10, имеют кривую КПД, описывающую участки с более высоким и более низким КПД. Например, множество таких генераторов работают с самым высоким КПД при производительности выше 80%. Разные генераторы имеют разные кривые КПД, данные из которых могут быть сохранены в запоминающем устройстве вычислительного компонента 26. В некоторых вариантах осуществления каждый генератор имеет отличающуюся кривую КПД. В некоторых вариантах осуществления, в дополнение к ранее существующей кривой КПД, могут использоваться датчики и измерительные приборы генератора для вычисления КПД в режиме реального времени, в случае чего эта информация может использоваться для реализации архитектуры системы согласно вариантам осуществления настоящего изобретения. VFD 20 также могут иметь предпочтительные рабочие диапазоны, которые могут относиться к более высокому КПД или к другому подходящему параметру. При эксплуатации системы 10 двигатели 22 работают при разных нагрузках в зависимости от того, какие задачи выполняются системой 10. В некоторых вариантах осуществления самые высокие нагрузки вызваны работой буровых насосов или верхнего привода, но системы и способы согласно настоящему изобретению могут повысить КПД независимо от возможной нагрузки.

[0018] Вычислительный компонент 26 выполнен с возможностью мониторинга нагрузки на двигателях 22, производительности генераторов и работы VFD 20, а также внесения корректировок на основании эффективной работы этих устройств. В целях пояснения, но не ограничения, предположим, что в одном варианте осуществления для двигателей 22 требуется 1000 ватт, и каждый генератор может производить 1200 ватт. Если два генератора работают, и нагрузка разделена между двумя генераторами, каждый генератор несет половину нагрузки: 500 ватт. Генераторы, таким образом, работают при приблизительно 42% производительности (500/1200=0,416). Вычислительный компонент 26 принимает эту информацию и выполнен с возможностью установления того, что кривые КПД для генераторов предполагают, что более высокий КПД может быть получен, если будет работать только один генератор, а другой генератор будет выключен. Вычислительный компонент 26 может быть выполнен с возможностью предупреждения оператора об этой ситуации, после чего оператор может выполнить изменение. В других вариантах осуществления вычислительный компонент 26 может быть выполнен с возможностью автоматического выполнения изменения. В этом примере первый генератор будет выключен, а второй останется работать - теперь с производительностью 83% (1000/1200=0,833). Вычислительный компонент 26 может быть выполнен с возможностью осуществления этого вычисления в любой системе, независимо от количества доступных генераторов, и даже если генераторы имеют разные значения производительности.

[0019] Задающим параметром может быть КПД всей системы, или он может представлять собой время или другой подходящий параметр. Например, в некоторых вариантах осуществления более эффективным может оказаться запуск или останов одного или более генераторов, но некоторые операции должны быть осуществлены за заданное время, даже ценой КПД генератора. Еще одним соображением являются затраты энергии и времени на запуск и останов генератора. Вычислительный компонент 26 может получить информацию, касающуюся нагрузки, необходимой для двигателей 22, и ожидаемой будущей нагрузки. Например, если двигатели 22 работают для бурения на нефть и газ, и ожидается что эта работа будет продолжаться несколько часов, вычислительный компонент 26 может вычислить, что выигрыш в КПД, который будет достигнут за счет выполнения изменения, является целесообразным с учетом продолжительности времени, в течение которого система 10 будет работать в этих условиях, в то время как, если работа близится к завершению, от выполнения изменения можно получить небольшой выигрыш или ничего не получить.

[0020] На фиг. 2 показан график применения генератора согласно системам и способам настоящего изобретения. Конкретные позиционные обозначения, показанные на этих фигурах, выбраны для простоты объяснения, но не ограничения. Вертикальная ось представляет производительность для G1 и G2, которые представляют два генератора в системе. Для простоты вычисления генераторы вырабатывают такую же мощность в ваттах, как и процент от рабочей производительности: 100 Вт при полной производительности, 90 Вт при 90% и т. д. В начальном состоянии каждый генератор работает при производительности 70%, что дает выходную мощность 90 ватт и общий КПД 70%. Согласно настоящему изобретению вычислительный компонент может учитывать КПД каждого генератора и, получив информацию в виде данных, которые указывают, что эти генераторы более эффективны при более высокой рабочей производительности, может менять работу двух генераторов. Множество генераторов работают с более высоким КПД, близким к 90% производительности. Системы и способы согласно настоящему изобретению могут устанавливать возможность переноса нагрузки с двух генераторов, работающих при 45%, на один генератор, работающий при 90%. Для равномерного распределения нагрузки требуются многие системы, содержащие множество генераторов, что означает, что нагрузка, действующая на два генератора, не может быть целесообразно разделена между двумя генераторами неравным образом. То есть конфигурация, в которой G1 работает при 30%, а G2 - при 50%, нежелательна или, в некоторых случаях, невозможна. Системы и способы согласно настоящему изобретению могут учитывать такое условие или ограничение. Могут быть другие ограничения или факторы, которые учитываются вычислительным компонентом согласно настоящему изобретению и которые влияют на решение о том, как распределить нагрузку среди генераторов. После изменения G2 работает при 90%, а G1 выключен, что дает такую же общую выходную мощность 120 Вт, но общий КПД составляет 85%. После изменения все 90 Вт поступают от G2 с более высоким КПД (90%), а G1 выключен, что приводит к более высокому общему КПД. КПД взвешивается по выходной мощности. Это один пример вычисления, которое может быть выполнено для эксплуатации генераторов с более высоким общим КПД. Возможно много других примеров, которые станут очевидны из настоящего описания.

[0021] На фиг. 3 показан другой график, на котором изображены результаты повышения общего КПД, которые могут быть достигнуты посредством систем и способов согласно настоящему изобретению. В начальном состоянии есть три генератора G1, G2 и G3, каждый из которых работает при 60% производительности; они вырабатывают всего 180 Вт мощности и имеют общий КПД 65%. Вычислительный компонент может определить, что генераторы будут более эффективны, если они работают близко к 90% производительности, и, таким образом, он может предложить оператору выполнить изменение или он сам может выполнить это изменение. Изменение заключается в том, чтобы G1 и G2 работали при 90% производительности, и в том, чтобы перевести G3 в состояние ожидание или совсем выключить G3. Результатом будет выработка тех же 180 Вт, но с намного более высоким КПД - 90%.

[0022] На фиг. 4 показана блок-схема способа 30 эффективной эксплуатации генераторной системы согласно вариантам осуществления настоящего изобретения. Способ 30 начинается на этапе 32, который соответствует действительному началу работы системы, или он может представлять любую произвольную исходную точку. На этапе 34 КПД системы оценивают и сравнивают с заданным пороговым уровнем КПД. Если КПД превышает пороговое значение, способ включает периодическое повторение этой оценки. Частота оценок зависит от свойств системы и простоты, с которой оценка может выполняться. В некоторых вариантах осуществления оценку выполняют несколько раз в секунду, и эта частота ограничена только естественными ограничениями вычислительных компонентов, используемых в системе. КПД системы может представлять собой среднее от КПД каждого работающего генератора, или оно может представлять собой средневзвешенное, вычисленное как произведение КПД в процентах и энергии, вырабатываемой каждым генератором. В других вариантах осуществления КПД не ограничено КПД генераторов, но, скорее, КПД системы в целом. Кроме того, в некоторых вариантах осуществления ключевым параметром может быть объем выработки мощности или другая подходящая переменная. В некоторых вариантах осуществления возможна комбинация параметров. Например, вычисляется КПД, но также учитываются другие факторы, такие как выходная мощность. У одного из двигателей, таких как верхний привод буровой установки, может быть требование по мощности, согласно которому требуется по меньшей мере определенное количество мощности, ниже которого он не может или не должен работать. Соответственно, несмотря на выигрыш в КПД, который может быть достигнут при выполнении некоторого изменения, если это изменение снизит выходную мощность ниже этого нижнего предела, изменение не выполняют.

[0023] На этапе 36 осуществляют опрос генераторов. Ниже со ссылкой на фиг. 5 описан другой способ, который может быть рассмотрен ниже. Информация о КПД генераторов может быть передана датчиками или измерительными приборами, находящимися на генераторах, которые могут отправлять цифровой или аналоговый сигнал на вычислительный компонент, который может интерпретировать эти показания в КПД в числовом виде. На этапе 38 двигатели опрашивают аналогичным образом. Нагрузка, запрошенная двигателем или двигателями, может быть вычислена для определения того, требуется ли изменение производительности генератора.

[0024] В дополнение к нагрузке, в текущий момент действующей на двигатели, также может учитываться будущая ожидаемая нагрузка. Иногда на двигатели действуют временные нагрузки. Корректировка нагрузки генератора в некоторых вариантах осуществления может привести к затратам энергии. Запуск генератора или выключение генератора, или внесение необходимых изменений в шину или выпрямители, или VFD, или любой другой компонент требует некоторой энергии. Может быть определено, что для кратковременного пика энергии изменение вносить не следует. Однако для более долгосрочных изменений затраты на внесение изменений менее значительны по сравнению с возможным увеличением КПД.

[0025] После сбора данных с двигателей и генераторов, на этапе 40 выполняют проверку того, существует или нет другое, более эффективное распределение нагрузки генератора, которое может быть более эффективным. Вычислительный компонент может выполнять эти вычисления на основании количества генераторов, производительности генераторов и кривой КПД для каждого генератора. Каждый генератор может иметь кривую КПД, описывающую КПД как функцию от производительности. Если альтернативные варианты распределения для генераторов отсутствуют, на этапе 42 выполняют проверку того, может или не может быть изменена рабочая нагрузка на двигатели. Рабочая нагрузка может иметь некоторые ограничения, такие как поддержание скорости проходки для буровых работ, которая не может быть изменена. В этом случае ответом является «нет», и на этапе 47 выполняют проверку, чтобы установить, была или нет завершена работа. Если работа продолжается, управление возвращается на этап 34. Однако в некоторых вариантах осуществления существуют другие задачи, которые могут быть выполнены в дополнение к текущим задачам или вместо них. Предположим, например, что есть два генератора, каждый из которых работает при 80% производительности, но КПД каждого генератора выше при приблизительно 90% производительности. На этапе 42 может быть выполнена проверка для установления любых дополнительных задач, которые могут быть выполнены, которые могли бы повысить требуемую выходную мощность таким образом, что каждый из генераторов может работать ближе к 90% отметке производительности. Дополнительные задачи могут быть любыми - от зарядки аккумулятора до эксплуатации оборудования, выполнения ремонтов или любой другой подходящей дополнительной нагрузки. Вычислительный компонент согласно настоящему изобретению может устанавливать эти дополнительные задачи и на этапе 44 инициировать их осуществление, что повышает рабочую скорость генератора таким образом, что он становится ближе к 90% производительности и, таким образом, работает более энергоэффективно.

[0026] Если проверка на этапе 40 приводит к другому распределению для генераторов, которое будет более эффективным, то на этапе 46 новое распределение устанавливают и выполняют. Как описано выше, это может означать изменение нагрузки одного или более генераторов, или включение или выключение одного или более генераторов. После выполнения этого изменения способ может включать проверку того, завершена работа или нет. Если да, то способ заканчивается на этапе 48; в ином случае, способ продолжается с возвратом управления на этап 34, и способ повторяется.

[0027] На фиг. 5 показана другая блок-схема способа 50 эффективной эксплуатации генераторной системы согласно вариантам осуществления настоящего изобретения. На этапе 52 способ начинается. На этапе 54 выполняют проверку для одного или более генераторов для определения того, превышает генератор производительность или нет. Если нет, управление переходит на этап 56 для проверки КПД работы генератора. На этапе 56 управление может перейти к элементу 36 на фиг. 4, и этот процесс описан подробно выше. После возврата с проверки КПД, управление может вернуться к этапу 54 для повторной проверки производительности генераторов. Это может быть выполнено для каждого генератора в отдельности или для групп генераторов.

[0028] Если любой один или более из генераторов превышает производительность, способ продолжается этапом 58 с проверкой того, доступны или нет другие генераторы. Если их нет, на этапе 60 способ включает инициацию последовательности управления мощностью, в ходе которой процессы прекращаются или изменяются в последовательности по приоритету от самого низкого к самому высокому, предназначенной для предотвращения нанесения вреда генераторам и/или окружающему оборудованию или персоналу. Если есть другие генераторы, доступные на этапе 62, способ включает задействование этого другого генератора и перераспределение нагрузки среди генераторов. После или, возможно, одновременно с запуском следующего генератора может быть выполнена проверка КПД на этапе 56 (и описана дополнительно со ссылкой на фиг. 4) для оптимизации нагрузки на генераторы с учетом нового задействованного генератора. Соответственно, проверка для оптимизации может быть инициирована показанием перегруженного генератора.

[0029] На фиг. 6 показана иллюстративная компьютерная архитектура для компьютера 70, используемого в различных вариантах осуществления. Вычислительный компонент, описанный в настоящем документе, может представлять собой компьютер, такой как компьютер 70. Компьютерная архитектура, показанная на фиг. 6, может быть выполнена как настольный или мобильный компьютер и содержит центральный процессор 72 (ЦП), системное запоминающее устройство 4, содержащее оперативное запоминающее устройство 6 (ОЗУ) и постоянное запоминающее устройство (ПЗУ) 8, и системную шину 78, которая соединяет запоминающее устройство с ЦП 72.

[0030] Базовая система ввода/вывода, содержащая базовые последовательности, которые способствуют передаче информации между элементами в компьютере, например во время запуска, хранится в ПЗУ 8. Компьютер 70 дополнительно содержит запоминающее устройство 80 большой емкости для хранения операционной системы 82, прикладные программы 84 и другие программные модули, которые будут описаны более подробно ниже.

[0031] Запоминающее устройство 80 большой емкости соединено с ЦП 72 посредством контроллера запоминающего устройства большой емкости (не показан), соединенного с шиной 78. Запоминающее устройство 80 большой емкости и связанные с ним машиночитаемые носители обеспечивают энергонезависимое хранилище данных компьютера 70. Хотя описание машиночитаемых носителей в настоящем документе относится к запоминающему устройству большой емкости, такому как жесткий диск или дисковод CD-ROM, машиночитаемые носители могут представлять собой любые доступные носители, доступ к которым может быть осуществлен компьютером 70. Запоминающее устройство 80 большой емкости также может содержать одну или более баз 86 данных.

[0032] В качестве примера, но не ограничения, машиночитаемые носители могут включать компьютерные запоминающие носители и средства связи. Компьютерные запоминающие носители включают энергозависимые и энергонезависимые, съемные и несъемные носители, реализованные посредством любого способа или технологии для хранения информации, такой как машиночитаемые команды, структуры данных, программные модули или другие данные. Машиночитаемые носители включают, но без ограничения, ОЗУ, ПЗУ, СППЗУ, ЭСПЗУ, флеш-память или твердотельное запоминающее устройство с другой технологией, CD-ROM, цифровые универсальные диски («DVD») или другое оптическое запоминающее устройство, магнитные кассеты, магнитную ленту, запоминающее устройство на магнитных дисках или другие магнитные запоминающие устройства, или любой другой носитель, который может использоваться для хранения требуемой информации и доступ к которому также может осуществляться компьютером 70.

[0033] Согласно различным вариантам осуществления компьютер 70 может работать в сетевом окружении с использованием логических соединений с удаленными компьютерами по сети 71, такой как интернет. Компьютер 70 может быть соединен с сетью 71 посредством блока 74 сетевого интерфейса, соединенного с шиной 78. Сетевое соединение может быть беспроводным и/или проводным. Блок 74 сетевого интерфейса также может использоваться для соединения с другими типами сетей и удаленных компьютерных систем. Компьютер 70 также может содержать контроллер 24 ввода/вывода для приема и обработки ввода от ряда других устройств, в том числе клавиатуры, мыши или электронного пера (не показаны на фиг. 1). Аналогично, контроллер 24 ввода/вывода может выдавать вывод на экран дисплея, принтер или устройство вывода другого типа (не показано).

[0034] Как вкратце упомянуто выше, множество программных модулей и файлов данных могут храниться в запоминающем устройстве 80 большой емкости и ОЗУ 6 компьютера 70, в том числе операционная система 82, подходящая для управления работой сетевого персонального компьютера. Запоминающее устройство 80 большой емкости и ОЗУ 6 также могут хранить один или более программных модулей. В частности, запоминающее устройство 80 большой емкости и ОЗУ 6 могут хранить одну или более прикладных программ 84. Прикладные программы 84 могут относиться к работе вычислительного компонента и могут определять принцип выбора генераторов и распределения рабочей нагрузки согласно вариантам осуществления настоящего изобретения.

[0035] Вышеприведенное описание позволяет среднему специалисту в данной области техники изготовить и применять описанные системы без излишних экспериментов. Определенные примеры приведены в целях объяснения и не имеют ограничительного характера.

1. Система, содержащая:

набор генераторов, который содержит множество отдельных генераторов и выполнен с возможностью распределения нагрузки среди генераторов, причем отдельные генераторы имеют рабочую производительность и рабочий КПД, причем рабочий КПД представляет собой функцию от рабочей производительности и причем отношение КПД к производительности представляет собой отношение рабочей производительности к рабочему КПД;

один или более двигателей, выполненных с возможностью потребления мощности, вырабатываемой генераторами, за счет приложения нагрузки к набору генераторов;

вычислительный компонент, выполненный с возможностью сохранения данных, касающихся отношения КПД к производительности для генераторов, причем вычислительный компонент выполнен с возможностью:

вычисления общего КПД набора генераторов;

определения доступности альтернативной мощностной конфигурации, в которой рабочая производительность одного или более генераторов изменяется;

вычисления ожидаемого изменения общего КПД, связанного с альтернативной мощностной конфигурацией; и

если ожидаемое изменение общего КПД достаточно высокое, вычислительный компонент выполнен с возможностью задействования альтернативной мощностной конфигурации.

2. Система по п. 1, отличающаяся тем, что альтернативная мощностная конфигурация предусматривает включение или выключение одного или более генераторов.

3. Система по п. 1, отличающаяся тем, что альтернативная мощностная конфигурация предусматривает перераспределение нагрузки среди генераторов.

4. Система по п. 1, отличающаяся тем, что вычислительный компонент дополнительно выполнен с возможностью учета затрат мощности альтернативной мощностной конфигурации.

5. Система по п. 1, отличающаяся тем, что реализация вычислительным компонентом альтернативной мощностной конфигурации включает внесение изменения в один или более генераторов без дополнительного ввода со стороны человека.

6. Система по п. 1, отличающаяся тем, что определение доступности альтернативной мощностной конфигурации включает определение того, имеются ли неиспользуемые генераторы или нет.

7. Система по п. 1, отличающаяся тем, что вычислительный компонент дополнительно выполнен с возможностью вычисления периода времени, в течение которого вторая мощностная конфигурация будет действовать.

8. Система по п. 1, отличающаяся тем, что вычислительный компонент выполнен с возможностью приема сигнала от одного или более генераторов, указывающего, что генератор превышает производительность, и причем вычислительный компонент выполнен с возможностью определения доступности альтернативной мощностной конфигурации, в которой генератор, превышающий производительность, подвергается сниженной нагрузке.

9. Система по п. 1, отличающаяся тем, что вычислительный компонент выполнен с возможностью учета производительности генераторов, находящейся в мультипликативном отношении с КПД генераторов.

10. Система по п. 1, отличающаяся тем, что вычисление ожидаемого изменения КПД при сравнении первой и второй мощностных конфигураций включает применение отношения КПД к производительности для генераторов.

11. Система по п. 1, отличающаяся тем, что определение второй мощностной конфигурации включает установление того, может быть изменена нагрузка или нет.

12. Система по п. 1, отличающаяся тем, что определение второй мощностной конфигурации включает установление множества вторых мощностных конфигураций и выбор наилучшей мощностной конфигурации в качестве второй мощностной конфигурации.

13. Способ эксплуатации энергоблока буровой установки, причем способ включает:

вычисление КПД набора генераторов, используемого для подачи мощности на буровую установку, причем набор генераторов содержит один или более отдельных генераторов;

если КПД набора генераторов ниже заданного желаемого порогового значения КПД, нахождение альтернативного распределения мощности для набора генераторов;

вычисление КПД альтернативного распределения мощности для набора генераторов; и

если КПД альтернативного распределения мощности для набора генераторов выше заданного желаемого порогового значения КПД, инициацию изменения альтернативного распределения мощности для набора генераторов.

14. Способ по п. 13, дополнительно включающий сохранение информации для набора отдельных генераторов, описывающей отношение между рабочей производительностью и КПД, и причем вычисление КПД альтернативного распределения мощности для генераторов включает осуществление доступа к информации.

15. Способ по п. 13, отличающийся тем, что реализация альтернативного распределения мощности включает включение или выключение одного или более генераторов в наборе генераторов.

16. Способ по п. 13, отличающийся тем, что реализация альтернативного распределения мощности включает изменение нагрузки на одном или более генераторах.

17. Способ по п. 13, дополнительно включающий установление того, может быть изменена нагрузка или нет.

18. Способ эксплуатации генератора, причем способ включает:

измерение выходной мощности, потребления топлива и рабочей производительности на множестве генераторов, причем генераторы выполнены с возможностью совместной работы для подачи мощности для двигателя;

вычисление рабочего КПД для каждого генератора по меньшей мере частично на основании выходной мощности, потребления топлива и рабочей производительности каждого генератора;

передачу вычисленного рабочего КПД с помощью вычислительного компонента; и

прием команды от вычислительного компонента для изменения нагрузки, включения или выключения одного или более генераторов в ответ на команду.

19. Способ по п. 18, дополнительно включающий вычисление затрат энергии на запуск, равных величине энергии, необходимой для запуска отдельного генератора, затрат энергии на выключение, равных величине энергии, необходимой для выключения отдельного генератора, и передачу вычисленных затрат энергии на запуск и выключение на вычислительный компонент.

20. Способ по п. 18, дополнительно включающий осуществление изменения в одном или более генераторах в ответ на команду.

21. Способ по п. 18, дополнительно включающий отправку сигнала, если рабочая производительность превышает заданное пороговое значение, и причем вычислительный компонент выполнен с возможностью подачи команды в ответ на сигнал.



 

Похожие патенты:

Группа изобретений относится к системам многоствольной скважины. Система многоствольной скважины содержит единый соединительный узел, содержащий канал с первым верхним отверстием, первым нижним отверстием и вторым нижним отверстием.

Изобретение относится к системе заканчивания скважины. Техническим результатом является обеспечение осуществлять мониторинг в скважине в течение более длительного промежутка времени.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам дистанционного воспламенения потока природного газа (открытого газового фонтана) в условиях аварии на газовых месторождениях. Технический результат заключается в уменьшении времени аварийного поджига природного газа при увеличении безопасности проведения аварийных работ.

Изобретение относится к нефтегазодобывающей промышленности, в частности к исследованиям скважин с применением автономного источника питания глубинного оборудования. Скважинный источник питания для глубинного оборудования включает как минимум один корпус с парными полостями, выполненный с возможностью заполнения скважинным флюидом для выработки электрической энергии при помощи разнопотенциальных электродов, блок управления, блок контроля напряжения, каскадный диодный умножитель напряжения – УН, входной модуль и аккумуляторную батарею.

Группа изобретений относится к системам многоствольной скважины и к способу беспроводной передачи между компонентами ствола скважины. Система многоствольной скважины содержит единый соединительный узел, содержащий канал с первым верхним отверстием, первым нижним отверстием и вторым нижним отверстием.

Группа изобретений относится к нефтегазовой промышленности, в частности к защите скважинных инструментов и оборудования при транспортировке флюидов с эрозионными и/или коррозионными характеристиками. Узел, защищающий скважинный инструмент от износа, содержит изолирующую муфту, имеющую первый конец, второй конец, внешнюю поверхность и внутреннюю поверхность, образующую канал.

Группа изобретений относится к области многоствольного заканчивания скважин. Система доступа к боковому стволу скважины для перемещения изолирующей муфты относительно окна муфты заканчивания для регулирования доступа через окно содержит привод, содержащий соединительный механизм изолирующей муфты и приводной механизм.

Изобретение относится к операциям в многоствольной скважине и, в частности, к приводу для перемещения изолирующей муфты для операций в многоствольной скважине. Система доступа к боковому стволу скважины для перемещения изолирующей муфты относительно окна муфты заканчивания для регулирования доступа через окно включает привод, содержащий механизм зацепления изолирующей муфты и приводной механизм.

Изобретение относится к системе и способу управления потоком флюида в/из нескольких интервалов в боковом стволе скважины. Система многоствольной скважины содержит единый соединительный узел управления притоком многоствольной скважины (УПМС), содержащий канал с первым отверстием на верхнем конце канала, а также вторым и третьим отверстиями на нижнем конце канала, первичный проход, образованный каналом и проходящий от первого отверстия до второго отверстия с соединением канала, образованным вдоль канала между первым и вторым отверстиями.

Скважинный снаряд, содержащий: боковую колонну насосно-компрессорных труб, содержащую первую боковую подвеску насосно-компрессорных труб; при этом по меньшей мере часть боковой колонны насосно-компрессорных труб имеет D-образное поперечное сечение; при этом первая боковая подвеска насосно-компрессорных труб (i) образует составную часть боковой колонны насосно-компрессорных труб или (ii) является съемным компонентом боковой колонны насосно-компрессорных труб; и при этом боковая колонна насосно-компрессорных труб содержит проходящие через него первый канал и второй канал, причем первый и второй каналы разнесены друг от друга параллельно и каждый имеет круглое поперечное сечение.

Группа изобретений относится к соединению для применения в многоствольной системе заканчивания, к многоствольной системе заканчивания и к способу применения соединения в многоствольной системе заканчивания. Технический результат заключается в повышении эффективности изоляции и крепления. Соединение для применения в многоствольной системе заканчивания содержит металлический герметик, наносимый на боковой компонент, где металлический герметик состоит из материала, выбранного из группы, состоящей из металла, металлического сплава, оксида металла и любой их комбинации. Металлический герметик выполнен с возможностью расширения в ответ на гидролиз, образуя продукт реакции оксида металла, гидроксида металла или любой их комбинации. Боковой компонент и продукт реакции выполнены с возможностью образования уплотнения или образования анкерного крепления с нефтепромысловым трубчатым элементом многоствольной системы заканчивания в ответ на гидролиз. 3 н. и 12 з.п. ф-лы, 3 ил.
Наверх