Способ сборки модуля полезной нагрузки космического аппарата

Изобретение относится к космической технике и может быть использовано при создании космических аппаратов (КА) блочно-модульного исполнения. Способ сборки модуля полезной нагрузки (МПН) КА заключается в последовательной сборке сотовых панелей на центральной части КА при помощи резьбовых соединений. При этом МПН состоит из двух опорных панелей, двух приборных панелей, которые устанавливают и закрепляют на опорных панелях, и панели астроплаты, которую устанавливают и закрепляют на опорных и приборных панелях и на центральной части КА. Опорные панели расположены в плоскости XOZ и предназначены для установки и закрепления на центральной части КА. Приборные панели расположены параллельно плоскости XOY. Панель астроплаты расположена в плоскости YOZ. Каждую из приборных панелей устанавливают на опорные панели с помощью двух направляющих шпилек с гладкой частью, расположенных на одной линии вдоль оси X. Панель астроплаты устанавливают на каждую из приборных панелей с помощью двух посадочных болтов с гладкой частью, которые расположены на одной линии вдоль оси Y. В остальных местах крепления приборных панелей с опорными панелями и астроплаты с приборными панелями резьбовые соединения выполняют с зазорами в гладких частях посадочных отверстий. Повышается качество сборки МПН КА. 1 з.п. ф-лы, 12 ил.

 

Изобретение относится к космической технике и может быть использовано при создании космических аппаратов (КА) блочно-модульного исполнения, состоящих из двух модулей, модуля полезной нагрузки (МПН) и модуля служебных систем (МСС), изготавливаемых отдельно друг от друга.

В качестве прототипа выбран способ сборки МПН (патент RU № 2647404), согласно которому сборка МПН заключается в последовательной сборке сотовых панелей на центральной части КА при помощи резьбовых соединений, при этом МПН состоит из двух опорных панелей, расположенных в плоскости XOZ и предназначенных для установки и закрепления на центральной части КА двух приборных панелей, расположенных параллельно плоскости XOY, которые устанавливают и закрепляют на опорных панелях, и панели астроплаты, расположенной в плоскости YOZ, которую устанавливают и закрепляют на опорных и приборных панелях и на центральной части КА.

Недостатком прототипа является то, что соединение сотовых панелей между собой производится при помощи болтов с резьбовой частью, устанавливаемых с зазором в гладкой части посадочных отверстий. Изменение положения болтов в отверстии после воздействия вибраций активного участка полета, приводит к нарушению юстировок бортовых приборов и оборудования, которые устанавливают на астроплате и приборных панелях.

Для заявленного способа выявлены следующие общие с прототипом существенные признаки: способ сборки МПН КА, заключающийся в последовательной сборке сотовых панелей на центральной части КА при помощи резьбовых соединений, при этом МПН состоит из двух опорных панелей, расположенных в плоскости XOZ и предназначенных для установки и закрепления на центральной части КА двух приборных панелей, расположенных параллельно плоскости XOY, которые устанавливают и закрепляют на опорных панелях, и панели астроплаты, расположенной в плоскости YOZ, которую устанавливают и закрепляют на опорных и приборных панелях и на центральной части КА.

Технической проблемой, на решение которой направлено заявляемое изобретение является создание способа сборки МПН КА, обеспечивающее стабильность относительного положения сотовых панелей между собой при воздействии вибраций и теплового воздействия активного участка полета КА, что повышает качество сборки МПН и стабильность юстировок бортовых приборов и оборудования.

Указанная техническая проблема решается за счет того, что способ сборки МПН КА заключается в последовательной сборке сотовых панелей на центральной части КА при помощи резьбовых соединений. При этом МПН состоит из двух опорных панелей, расположенных в плоскости XOZ и предназначенных для установки и закрепления на центральной части КА, двух приборных панелей, расположенных параллельно плоскости XOY, которые устанавливают и закрепляют на опорных панелях, и панели астроплаты, расположенной в плоскости YOZ, которую устанавливают и закрепляют на опорных и приборных панелях и на центральной части КА. Каждую из приборных панелей устанавливают с помощью двух направляющих шпилек с гладкой частью, установленных в опорных панелях, расположенных на одной линии вдоль оси X так, что одна из них своей гладкой частью образует беззазорное соединение в круглом отверстии приборной панели и гладкой части шпильки опорной панели, а вторая – в гладкой части шпильки опорной панели и в пазу приборной панели с возможностью её свободного перемещения относительно опорной панели вдоль оси Х. Панель астроплаты устанавливают на каждую из приборных панелей с помощью двух посадочных болтов с гладкой частью, которые расположены на одной линии вдоль оси Y так, что один из них своей гладкой частью образует беззазорное соединение в круглых отверстиях астроплаты и приборной панели, а второй – в круглом отверстии приборной панели и в пазу астроплаты с возможностью свободного перемещения астроплаты относительно приборной панели вдоль оси Y. В остальных местах крепления приборных панелей с опорными панелями и астроплаты с приборными панелями резьбовые соединения выполняют с зазорами в гладких частях посадочных отверстий. Предусмотрена возможность сборки МПН, когда её производят на технологическом имитаторе центральной части КА, после чего МПН отделяют от технологического имитатора, а затем устанавливают и закрепляют на центральной части КА.

Техническим результатом данного технического решения является повышение качества сборки МПН и стабильности юстировок бортовых приборов и оборудования за счет достижения стабильного относительного положения сотовых панелей МПН между собой при воздействии вибраций и теплового воздействия активного участка полета КА.

Сущность технического решения заявляемого изобретения поясняется 12 рисунками, на которых изображено:

- на фиг. 1 – схема установки на центральной части КА опорных панелей;

- на фиг. 2 – схема установки приборных панелей и панели астроплаты;

- на фиг. 3 – расположение направляющей шпильки в отверстие;

- на фиг. 4 - размещение направляющей шпильки в отверстие;

- на фиг. 5 – расположение направляющей шпильки в пазу;

- на фиг. 6 – размещение направляющей шпильки в пазу;

- на фиг. 7 – расположение направляющего болта отверстие;

- на фиг. 8 - размещение направляющего болта в отверстие;

- на фиг. 9 – расположение направляющего болта в пазу;

- на фиг. 10 – размещение направляющего болта в пазу;

- на фиг. 11 – сборка МПН на технологическом имитаторе;

- на фиг. 12 – схема демонтажа МПН с технологического имитатора и монтаж МПН на центральную часть КА.

На фиг. 1 показана центральная часть КА 1, выполненная в виде сетчатой цилиндрической конструкции, на которую устанавливают опорные панели 2 и 3, расположенные в плоскости XOZ.

Далее на опорные панели 2 и 3 устанавливают и закрепляют соответственно приборные панели 4 и 5 (см. фиг. 2). Каждую из приборных панелей 4 (5) устанавливают на опорные панели 2 (3) с помощью двух направляющих шпилек 6 (см. фиг.3) с гладкой частью, расположенных на одной линии вдоль оси X. Одна из шпилек 6 своей гладкой частью образует беззазорное соединение в круглом отверстии 7 приборной панели 4 (5) и гладкой части 8 резьбового отверстия 9 опорной панели 2 (3) (см. фиг. 3 и 4). Вторая шпилька 6 – в гладкой части 8 резьбового отверстия 9 опорной панели 2 (3) и в пазу 10 приборной панели 4 (5) с возможностью ее свободного перемещения относительно опорной панели 2 (3) вдоль оси Х (см. фиг. 5 и 6).

Затем устанавливают панель астроплаты 11 так, что соединяют ее с одной из приборных панелей 5 с помощью двух посадочных болтов 12 с гладкой частью, которые расположены на одной линии вдоль оси Y. Один болт 12 своей гладкой частью 13 образует беззазорное соединение в круглых отверстиях 14 астроплаты 11 и приборной панели 5 (см. фиг. 7 и 8). Второй болт – в круглом отверстии 14 приборной панели 5 и в пазу 15 астроплаты 11 с возможностью свободного перемещения астроплаты 11 относительно приборной панели 5 вдоль оси Y (см. фиг. 9 и 10). В остальных местах крепления приборных панелей 4, 5 с опорными 2, 3 и астроплаты 11 с приборными панелями 4, 5 резьбовые соединения выполняют с зазорами в гладких частях посадочных отверстий (на фиг. 2 не показаны).

Беззазорные соединения в круглых отверстиях и в пазу позволяют обеспечить стабильность относительного положения панелей между собой при сборке и вибрациях активного участка полета, а заданное расположение зазоров в посадочных отверстиях и ориентация пазов относительно беззазорных соединений панелей позволяет компенсировать деформации при тепловых воздействиях.

Для уменьшения времени на проведение сборки модулей КА предусмотрен вариант автономной сборки МПН параллельно со сборкой остальных модулей, согласно которому МПН предварительно собирают на технологическом имитаторе 16 центральной части КА, у которых габариты и посадочные места для крепления МПН идентичны (см. фиг. 11). При этом последовательность сборки опорных панелей 2, 3, приборных панелей 4, 5 и панели астроплаты 11 на технологическом имитаторе 16 полностью соответствует сборке на центральной части КА 1. Сборка МПН на технологическом имитаторе 16 необходима при проведении регламентных работ с МПН отдельно от центральной части КА 1, например, при монтаже приборов и оборудования на МПН, при такелажных операциях и транспортировке МПН до мест проведения сборочных работ.

На фиг. 12 показана схема демонтажа МПН с технологического имитатора 16 и монтаж МПН на центральную часть КА 1. После проведения всех регламентных работ с МПН производят его демонтаж с технологического имитатора 16 и устанавливают на центральную часть КА 1 для проведения дальнейших монтажно-установочных операций.

Таким образом, способ сборки МПН КА с использованием направляющих шпилек и болтов при сборке сотовых панелей, и установкой их беззазорно в круглых отверстиях и пазах, с возможностью свободного перемещения в пазах по осям X или Y позволяет решить поставленную задачу – создание способа сборки МПН КА, обеспечивающего стабильность относительного положения сотовых панелей между собой, что повышает качество сборки МПН и стабильность юстировок бортовых приборов и оборудования.

1. Способ сборки модуля полезной нагрузки (МПН) космического аппарата (КА), заключающийся в последовательной сборке сотовых панелей на центральной части КА при помощи резьбовых соединений, при этом МПН состоит из двух опорных панелей, расположенных в плоскости XOZ и предназначенных для установки и закрепления на центральной части КА, двух приборных панелей, расположенных параллельно плоскости XOY, которые устанавливают и закрепляют на опорных панелях, и панели астроплаты, расположенной в плоскости YOZ, которую устанавливают и закрепляют на опорных и приборных панелях и на центральной части КА, отличающийся тем, что каждую из приборных панелей устанавливают на опорные панели с помощью двух направляющих шпилек с гладкой частью, расположенных на одной линии вдоль оси X так, что одна из них своей гладкой частью образует беззазорное соединение в круглом отверстии приборной панели и гладкой части шпильки в опорной панели, а вторая – в гладкой части шпильки опорной панели и в пазу приборной панели с возможностью ее свободного перемещения относительно опорной панели вдоль оси Х, панель астроплаты устанавливают на каждую из приборных панелей с помощью двух посадочных болтов с гладкой частью, которые расположены на одной линии вдоль оси Y так, что один из них своей гладкой частью образует беззазорное соединение в круглых отверстиях астроплаты и приборной панели, а второй – в круглом отверстии приборной панели и в пазу астроплаты с возможностью свободного перемещения астроплаты относительно приборной панели вдоль оси Y, в остальных местах крепления приборных панелей с опорными панелями и астроплаты с приборными панелями резьбовые соединения выполняют с зазорами в гладких частях посадочных отверстий.

2. Способ сборки МПН КА по п. 1, отличающийся тем, что сборку МПН производят на технологическом имитаторе центральной части КА, после чего МПН демонтируют с технологического имитатора, а затем устанавливают и закрепляют на центральной части КА.



 

Похожие патенты:

Изобретение относится к космической технике. Аппарат для уборки космического мусора включает реактивный двигатель, энергетический модуль и мусоросборник.

Изобретение относится к области космической техники и может быть использовано для коллокации (баллистического обеспечения гарантированного сосуществования) в одной и той же области околостационарной орбиты (ОСО) по долготе и широте относительно точки стояния космических аппаратов (КА). Способ состоит в том, что в выборе коридоров высоты на геостационарной орбите (ГСО) протяженностью по долготе не менее 0,2° до начала функционирования космического аппарата с самоколлокацией (КАСК).

Группа изобретений относится к космической технике. Обслуживающий спутник для обеспечения услуг по поддержанию положения для основного спутника может иметь тело и захватывающий механизм.

Изобретение относится к области космической техники и может быть использовано при изготовлении космических аппаратов (КА). Способ сборки КА включает установку на центральную часть космического аппарата в плоскостях +YОZ и -YОZ опорных панельных конструкций.

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам с общей массой до 10 кг. Многоцелевая модульная платформа космического аппарата нанокласса выполнена в форме шестиугольной призмы и состоит из набора унифицированных масштабируемых модулей.

Изобретение относится к области космической техники, а более конкретно к сборке космических аппаратов (КА). Предлагается способ соединения базовой и приборных панелей модуля полезной нагрузки КА с помощью дискретных узлов крепления, при котором узлы крепления выполняют в виде рычажных механизмов.

Изобретение относится области космической техники, а именно к способу сборки корпуса унифицированной платформы космического аппарата (УПКА). Способ сборки УПКА заключающийся в том, что сборку платформы проводят при вертикальном положении стоек.

Изобретение относится к космической технике, а более конкретно к сближению космических объектов. Способ управления движением космического объекта (КО) при сближении с другим космическим объектом (ДКО) включает выведение КО на опорную орбиту с отклонением от плоскости орбиты ДКО по долготе восходящего узла орбиты на величину ΔλВУ и по наклонению на величину Δi, но с заданным рассогласованием по аргументу широты ΔФ, и приложение к КО импульсов сближения для стыковки с ДКО.

Изобретение относится к космической технике, а именно к устройству космического аппарата, целью которого является доставка полезного груза на космическое тело естественного происхождения, обладающее малым гравитационным полем и неспособное к активным манёврам уклонения, таким как астероиды, кометы, малые спутники планет.

Техническое решение относится к области космической техники, конкретно к космическим платформам микрокласса, применяемым для формирования и передачи информации, в частности к спутниковой группировке, с помощью которой будет обеспечиваться демонстрация визуально различимой информации из космического пространства.

Группа изобретений относится к обслуживанию систем искусственных спутников различного назначения, включающих группы орбит с равным или близким наклонением (i), распределенных в экваториальной плоскости по долготе восходящего узла (Ω). Космическая обслуживающая система содержит средства обслуживания (СО) спутников, базовыми космическими аппаратами (БКА) на орбитах базирования, средствами получения и обработки данных о состоянии и функционировании (ДСФ) ОС и передачи результатов обработки ДСФ на БКА. Причем орбиты базирования выбраны с фокальным параметром (р'), насколько возможно меньшим характерного фокального параметра (р) орбит спутников из соответствующих областей обслуживания, и с наклонением (i'), близким к характерному наклонению (i) орбит спутников из этих же областей обслуживания. БКА содержат модули полезных нагрузок (ПН) и модульные межорбитальные транспортные аппараты (МТА) для перемещения СО между БКА и ОС. Управление движением МТА строится на основе прогнозов времен отказов ОС и включает регулирование скорости прецессии (Ω') плоскости оскулирующей орбиты МТА путем определенного изменения фокального параметра указанной орбиты. Повышается оперативность обслуживания ОС. 2 н. и 6 з.п. ф-лы, 2 ил.
Наверх