Способ производства коррозионностойкого стального листа

Изобретение относится к производству стального листа с декоративным покрытием, обладающим коррозионной стойкостью. Стальной лист пропускают с погружением через ванну с расплавом, состоящим из, мас.%: металлического алюминия 1,0-1,4, металлического магния 1,0-1,4, примесей не более 0,5 и металлического цинка - остальное, с формированием металлического покрытия, которое обрабатывают водной суспензией щелочной соли, содержащей 15-40 г/л щелочной соли и 1-7 г/л поверхностно-активного вещества. Наносят титансодержащий конверсионный слой, содержащий 2-10 мг/м2 дигидрогена гексафтортитана и 2-10 мг/м2 гексафторциркониевой кислоты, и на поверхность конверсионного слоя последовательно наносят термоотверждаемый грунтовочный состав и термоотверждаемый полимерный состав. Разница температур термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава при температуре, обеспечивающей отверждение, составляет 0-5°С. Разница времени отверждения термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава после их нанесения на поверхность конверсионного слоя составляет 0-10 секунд. Коррозионная стойкость обеспечивается за счет формирования на поверхности стального листа последовательно расположенных антикоррозионных слоев, имеющих максимальную адгезию друг к другу, без нарушения исходных механических свойств стального листа. 6 з.п. ф-лы, 1 табл., 1 пр.

 

Изобретение относится к металлургической промышленности, а именно к способам непрерывного производства стальной полосы, и может быть использовано на металлургических предприятиях при производстве стальной полосы с декоративным покрытием, обладающей повышенным сроком службы и коррозионной стойкостью.

Стальной прокат с многослойным антикоррозионным покрытием используется во многих областях, таких как строительство, автомобилестроение, изготовление корпусов различного оборудования, производство внешних панелей зданий и т.д. Самое широкое применение для защиты стали от коррозии получили металлические цинковые покрытия или многослойные покрытия, в которых на стальную основу последовательно наносятся цинк, грунт и эмаль. Основной причиной использования цинка в качестве основы защитного металлического покрытия является высокая технологичность процесса нанесения цинка в сочетании с низким электродным потенциалом цинка относительно железа, который обеспечивает антикоррозионную защиту стальной полосы даже при нарушении целостности покрытия.

Существуют покрытия, где цинк комбинируется с другим металлами для повышения коррозионной стойкости самого покрытия, например, с магнием, алюминием, никелем и т.д. Уменьшение доли цинка в покрытии может негативно повлиять на катодную защиту стали на непокрытых участках (кромки, сварные соединения). С другой стороны, добавление магния и алюминия в состав цинкового покрытия улучшает коррозионную стойкость покрытия за счет формирования прочного оксидного слоя при окислении магния и алюминия в процессе взаимодействия с окружающей средой.

Известен способ производства стального проката с коррозионностойким покрытием, описанный в патенте WO 2013160567 A1 (от 25 апреля 2012, Arcelormittal Investigacion Y Desarrollo, SL), являющийся наиболее близким к способу согласно изобретению. В известном способе в качестве металлического покрытия используется сплав цинка с алюминием и магнием в соотношении: 0,1-20% алюминия, 0,1-10% магния, остальное - цинк.

Способ предполагает использование следующих технологических операций:

1) подготовку стальной поверхности перед нанесением покрытий с использованием травильных растворов;

2) нанесение металлического покрытия методом горячего погружения;

3) охлаждение стальной полосы;

4) удаление слоев оксида или гидроксида магния, образовавшихся на поверхностях металлического покрытия последовательной обработкой в щелочных растворах и последующей обработкой конверсионными кислыми растворами с рН от 1 до 4;

5) нанесение лакокрасочных материалов из сложных полиэфиров, сшитых меламином, сложных полиэфиров, сшитых изоцианатом, полиуретанов и галогенированных производных виниловых полимеров на поверхность металлического покрытия.

Основным недостатком предложенного способа является его низкая универсальность, которая не позволяет использовать производственные линии, предназначенные для реализации известного способа для производства стальной полосы с различными металлическими и полимерными покрытиями, существенно отличающимися от раскрытых в описании к патентной заявке. Например, в известном способе обязательной операцией является удаление с поверхности стальной полосы слоя гидроокиси магния, образование которого является неизбежным при реализации известного способа. Другим недостатком реализации известного способа является низкое качество покрытия. Окисление алюминия и магния на стальной полосе при транспортировке полосы от места обработки щелочными и кислыми растворами до места нанесения лакокрасочных покрытий, может приводить к образованию участков с рыхлыми пленками оксидов, и, как результат, к отслоению лакокрасочных покрытий на этих участках.

Также к недостаткам способа можно отнести широкий диапазон концентраций металлов покрытия в ванне расплава, что существенно затрудняет получение однородности свойств и фазового состава цинк-алюминий-магниевого покрытия по длине полосы.

Задача, и технический результат, на достижение которых направлено заявляемое техническое решение, является производство стальной полосы с повышенными антикоррозионными и прочностными характеристиками. Достигнуть улучшенного антикоррозионного эффекта предлагается за счет комбинирования методов коррозионной защиты на поверхности стальной полосы так, что последовательно расположенные антикоррозионные слои имеют максимальную адгезию друг к другу, а параметры технологического процесса на всех стадиях реализации способа, приводят к формированию всех антикоррозионных слоев с максимальным возможным качеством и без нарушения исходных механических свойств стального листа.

Для решения поставленной задачи и достижения технического результата предложен способ производства стального листа с полимерным покрытием, заключающийся в том, что:

обрабатывают поверхность стального листа травильным раствором с температурой раствора в травильной ванне 60°С, температурой полосы 20-25°С, концентрацией раствора 10-50 г/л;

обработанный травильным раствором стальной лист после предварительного нагрева в проходной печи до температуры 405-415°С пропускают, с погружением через ванну с расплавом, состоящим из: металлического алюминия 1,0-1,4 масс. %, металлического магния 1,0-1,4 масс. %, примесей не более 0,5 масс % и металлического цинка - остальное, с обеспечением формирования металлического покрытия;

обрабатывают металлическое покрытие водной суспензией щелочной соли с рН=10-12 с температурой раствора в травильной ванне 60°С, температурой полосы 20-25°С, концентрацией щелочной соли в растворе 15-40 г/л и концентрацией поверхностно-активного вещества (ПАВ) в растворе 1-7 г/л;

наносят на металлическое покрытие титансодержащий конверсионный слой, содержащий дигидрогена гексафтортитанат, с обеспечением осаждения металлического титана на металлическое покрытие;

последовательно наносят на поверхность конверсионного слоя термоотверждаемый грунтовочный состав и термоотверждаемый полимерный состав; и

доводят температуру стального листа до комнатной температуры, после завершения отверждения термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава; причем:

в качестве термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава выбирают такие составы, что разница температур термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава при температуре, при которой обеспечивается отверждение, составляет 0-5°С; а

разница времени отверждения термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава после их нанесения на поверхность конверсионного слоя составляет 0-10 секунд.

В частных случаях реализации изобретения, лист может быть выполнен из холоднокатаной отожженной, холоднокатаной не отожженной или горячекатаной конструкционной стали.

При реализации способа перед нанесением на поверхность конверсионного слоя термоотверждаемого грунтовочного состава, преимущественно, доводят температуру стального листа до температуры 20-25°С. При этом, в процессе реализации способа, в ванну с расплавом могут добавлять из цинкового сплава с содержанием магния 1,2-3,0 масс. %, алюминия 1,2-2,0 масс. %, примести не более 0,5 масс. % и цинк - остальное, по мере расходования расплава на формирование покрытия листа.

Используемая при реализации способа водная суспензия щелочной соли может содержать 1,0-7,0 г/л анионного поверхностно-активного вещества. При нанесении конверсионного слоя может обеспечиваться осаждение 3-12 мг/м2 титана в нанесенном конверсионном слое. В качестве полимерного состава может быть использована декоративная эмаль, на основе полиэфира, полиэфира сшитого меламином, полиуретана, ПВДФ в том числе полиуретана и полиэфиров в сморщенном и текстурированном исполнении, а также содержащих акрилатные и/или эпоксидные смолы. Титансодержащий конверсионный слой, может содержать 2-10 мг/м2 дигидрогена гексафтортитана и 2-10 мг/м2 гексафторциркониевой кислоты.

При реализации способа могут использоваться четыре стадии формирования монолитного защитного покрытия на поверхности стального листа.

На первой стадии на обезжиренную и очищенную от пленок оксидов стальную полосу наносится цинк-алюминий-магниевое покрытие. Нанесение покрытия осуществляется в ванне расплава Zn(97,2-98,0%)+Al(1-1,4%)+Mg(1-1,4%) при температуре 420-460°С и скорости прохождения полосы через ванну полосы 40-165 м/мин. Исходная температура стальной полосы перед погружением в ванну и время нахождения полосы в ванне определяются требуемой толщиной защитного покрытия. Преимущественно, после выхода стальной полосы из ванны, на полосе формируется слой кристаллизованного расплава, образовавшегося за счет удаления излишков расплава при помощи газовых ножей (воздух либо азот) и охлаждения расплава на поверхности стальной полосы устройствами воздушного и водяного охлаждения.

Концентрация Zn, Al и Mg в ванне расплава контролируется каждые 1,0-3,0 часа методом атомно-адсорбционной спектроскопии или методом масс-спектрометрии с индуктивно-связанной плазмой и поддерживается в стабильном состоянии добавлением слитков на основе цинка с содержанием Mg 1,2-3,0% и Al 1,2-2,0%. После прохождения ванны, излишки жидкого металла удаляются с поверхности полосы газовыми ножами (воздушными или азотными), что позволяет сформировать металлическое покрытие толщиной 4-15 мкм. Толщина покрытия может регулироваться не только за счет скорости перемещения полосы через ванну, но и путем изменения интенсивности обдува полосы газом после выхода полосы из ванны с расплавом.

Далее стальная полоса с нанесенным покрытием охлаждается со скоростью 1-20°С/сек, что формирует окончательную кристаллическую структуру покрытия.

Сформированное покрытие, представляет собой матрицу Al/Zn/MgZn2 (не более 10%) с распределенной в ней фазой Zn (более 90%) в виде отдельных либо непрерывно связанных зерен. Большое содержание цинка в покрытии обеспечивает катодную защиту стальной полосы даже на участках, где может быть нарушена сплошность или нанесено сквозное повреждение во время эксплуатации. Продукты коррозии Al и Mg образуют двойные слоистые гидроксиды, которые выполняют функции дополнительной барьерной защиты между коррозионно активной средой и стальной полосой с цинк-алюминий-магниевым покрытием. Стойкость к коррозии стальной полосы с покрытием такого типа, испытанная по ГОСТ 30630.2.5-2013 (ISO 9227:2012) в камере солевого тумана, в 3-10 раз выше, чем у стальной полосы со стандартным цинковым покрытием той же толщины. Покрытие с содержанием алюминия и магния ниже указанных диапазонов не дает преимуществ по сравнению с покрытием из чистого цинка, а превышение содержания магния и алюминия выше указанных диапазонов существенно повышает стоимость покрытия и может привести к формированию на поверхности покрытия рыхлых пленок оксидов, которые способствуют отслоению наносимого полимерного покрытия.

На второй стадии, поверхность стали с покрытием очищается от возможных органических загрязнений с удалением оксидов с поверхностного слоя. Для очистки используется композиция из водной суспензии щелочных солей в концентрации 15-40 г/л и анионного поверхностно-активного вещества в концентрации 1,0-7,0 г/л, при температуре обработки 50-70°С. При использовании указанной композиции, обладающей щелочным рН≈10-12, обеспечивается эффективная очистка поверхности без заметного растворения и выноса металлов из объема цинк-алюминий-магниевого покрытия. Кроме того, очищенная поверхность полосы не требует дополнительной обработки перед нанесением конверсионного покрытия.

На третьей стадии, сталь с цинк-алюминий-магниевым покрытием обрабатывается конверсионными составами на основе дигидрогена гексафтортитаната или комбинации дигидрогена гексафтортитаната с гексафторциркониевой кислотой. В процессе конверсии, на поверхности цинк-алюминий-магниевого покрытия формируется слой нерастворимых соединений титана и циркония, состоящий из металл-оксидной гидратированной пленки, содержащей TiO2*2H2O или TiO2*2H2O+ZrO2*2H2O. Эта пленка обеспечивает дополнительную барьерную защиту от коррозии, а также повышает смачиваемость поверхности полосы, вследствие чего, повышается адгезия к полосе органического покрытия, наносимого на следующей стадии. Концентрация активных веществ и время обработки полосы в конверсионном растворе выбирается таким образом, чтобы количество распределенного титана в конверсионном слое составляло 3-12 мг/м2. При содержании титана менее 3 мг/м2 наблюдается ухудшение коррозионных свойств покрытия, а при содержании титана более 12 мг/м2 - ухудшение механических свойств, таких как прочность покрытия при изгибании.

На четвертой стадии стальная полоса поочередно покрывается термоотверждаемым грунтовочным составом и термоотверждаемым полимерным составом, в виде органических покрытий, наносимых валковым способом. Сначала наносится полимерный грунт, а затем отделочная эмаль. В частном случае реализации изобретения, покрытие может быть однослойным. В зависимости от выпускаемого сортамента стальная полоса может быть покрыта как с одной стороны, так и с двух сторон полимерным грунтом и отделочной эмалью или однослойным покрытием.

При выборе полимерной грунтовки и отделочной эмали необходимо подбирать составы с близким временем отверждения при выбранных температурах отверждения. Разница по температурам отверждения должна составлять 0-5°С, а разница по временам отверждения 0-10 с. Выбор таких параметров обусловлен тем, что при последовательном нанесении полимерных покрытий, основа которых обладает различными теплофизическими свойствами, существенно повышается вероятность образования дефектов в процессе нанесения органических слоев таких как пузыри и кратеры, которые оказывают негативное влияние на коррозионную стойкость и механические свойства получаемого проката с покрытием. Помимо прочего, выбор близких времен отверждения и температур отверждения дает возможность использования идентичных технологических модулей для реализации операций отверждения и обеспечивает перемещение ленты с постоянной скоростью через последовательные участки обработки.

В качестве грунта и отделочной эмали используются лакокрасочные материалы на основе полиэфиров, полиэфиров сшитых меламином, полиуретанов, поливинилденфторидов (ПВДФ), в том числе сморщенных и текстурированных полиэфиров и полиуретанов, а также эпоксидных смол горячего отверждения с температурой отверждения 320-385°С, пиковой температурой металлической полосы 200-250°С и временем отверждения в печи агрегата полимерных покрытий 21-34 с. Кроме того, в состав грунта и отделочной эмали могут входить частицы наполнителей и пигментов на основе таких минералов как TiO2, BaSO4, SiO2, СаСО3, тальк, каолинит, воластонит, железо-марганцевая шпинель и другие.

Способ, раскрытый в заявляемом техническом решении, имеет ряд преимуществ:

- способ обеспечивает повышенную коррозионную стойкость за счет сочетания нескольких типов защиты стали от коррозии: катодный, барьерный и ингибиторный;

- стабильность физико-механических показателей и химического состава покрытия по всей длине полосы за счет постоянного контроля и поддержания концентраций металлов в ванне расплава;

- очистка поверхности перед нанесением конверсионного слоя осуществляется водной суспензией щелочных солей (рН=10-12), что в отличие от кислотных растворов (рН<7) позволяет избежать повреждений цинк-алюминий-магниевого покрытия и уменьшения его толщины;

- способ предполагает нанесение конверсионного слоя определенной массы на единицу площади, что обеспечивает оптимальное сочетание коррозионной стойкости и механических свойств, после нанесения органического покрытия;

- при производстве проката с покрытием не используются канцерогенные хром (Cr6+ и Cr3+) содержащие компоненты, определяемые, как токсичные и запрещенные к применению на территории стран Евросоюза и США;

- использование лакокрасочных материалов с близкими теплофизическими свойствами снижает количество возможного брака, снижает вероятность образования дефектов при эксплуатации изделий из металлопроката с покрытием, полученным раскрываемым методом, а также повышает производительность технологической линии покраски.

Изобретение иллюстрируется следующим примером.

Пример

На производственной площадке Группы «НЛМК» проводился выпуск опытно-промышленной партии окрашенного стального проката с цинк-алюминий-магниевым покрытием на агрегатах непрерывного горячего цинкования (АНГЦ) и нанесения полимерных покрытий (АПП).

Нанесение цинк-алюминий-магниевого покрытия.

Для производства стальной полосы с цинк-алюминий-магниевым покрытием в ванне АНГЦ был подготовлен расплав, содержащий 97,6±0,4 масс. % цинка, 1,2±0,2 масс. % алюминия и 1,2±0,2 масс. % магния. Концентрация алюминия и магния контролировалась каждый час методом атомно-абсорбционной спектроскопии и поддерживалась в пределах 1,1-1,3 масс. % алюминия и 1,1-1,3 масс. % магния путем добавления слитков на основе цинка с содержанием Mg 1,2-3,0 масс. % и Al 1,2-2,0 масс. % по мере расходования металла ванны. Температура расплава поддерживалась на уровне 430±5°С.

Обезжиренная и очищенная от пленок оксидов полоса стали 08 пс, отожженная в предварительно разогретой проходной печи до температуры на выходе из печи 435°С, со скоростью движения 165 м/мин погружалась в ванну расплава АНГЦ, где на ее поверхность осаждалось цинк-алюминий-магниевое покрытие. Толщина покрытия после прохождения ванны поддерживалась в диапазоне 8-10 мкм путем отсечения излишков расплава с помощью газовых ножей с подачей воздуха. Далее стальная полоса с покрытием охлаждалась со скоростью 15±2°С/с в проходной холодильной камере. Для защиты от образования белой ржавчины при хранении рулонов, возможно последующее промасливание полосы с покрытием в промасливающей машине.

Подготовка поверхности полосы перед нанесением лакокрасочных материалов (ЛКМ).

Подготовка поверхности стальной полосы с покрытием перед нанесением ЛКМ заключалась в следующем:

Обработка давлением в дрессировочной клети с целью придания шероховатости Ra от 0,5 до 1,5 мкм.

Обезжиривание поверхности и удаление поверхностных оксидов проводилось с использованием композиции на щелочной основе (рН=11), состоящей из водной суспензии щелочных солей (D1), в концентрации 25 г/л и любого анионного ПАВ (S1), в концентрации 3 г/л.

Нанесение конверсионного слоя. Для нанесения конверсионного слоя использовался состав на основе комбинации дигидрогена гексафтортитаната с гексафторциркониевой кислотой (под торговой маркой Bonderite 1455). Количество распределенного титана в поверхностном слое составило 10 мг/м2.

Нанесение ЛКМ

В качестве наносимых покрытий были использованы полиэфирный грунт по ГОСТ Р 52146-2003 или EN 10169-2010 (Р1) и отделочная эмаль (торговая марка Beckrypol 3000) на полиэфирной основе с условной вязкостью по ГОСТ 8420-74 - 50 с, массовой долей нелетучих веществ 55% и пиковой температурой полосы 240°С.

Грунт и отделочная эмаль наносились в АПП последовательно валковым способом. На лицевую сторону - нанесение грунта, отверждение грунта в проходной печи при 340°С в течение 25 с, охлаждение, нанесение отделочной эмали, отверждение эмали в проходной печи при 340°С в течение 25 с, охлаждение. На обратную сторону - нанесение однослойного покрытия, отверждение однослойного покрытия в проходной печи при 340°С в течение 25 с, охлаждение.

Окрашенная стальная полоса, полученная указанным методом, сматывалась в рулоны и отправлялась на склад.

Свойства получившейся стальной полосы были оценены в соответствии со стандартами EN 10169, EN 13523-7, EN 13523-8 и 13523-26. Результаты тестов представлены в таблице 1.

1. Способ производства стального листа с полимерным покрытием, заключающийся в том, что

стальной лист пропускают с погружением через ванну с расплавом, состоящим из, мас.%: металлического алюминия 1,0-1,4, металлического магния 1,0-1,4, примесей не более 0,5 и металлического цинка - остальное, с обеспечением формирования металлического покрытия,

обрабатывают металлическое покрытие водной суспензией щелочной соли с рН = 10-12 с температурой раствора 60°С, температурой листа 20-25°С, концентрацией щелочной соли в растворе 15-40 г/л и концентрацией поверхностно-активного вещества (ПАВ) в растворе 1-7 г/л,

наносят на металлическое покрытие титансодержащий конверсионный слой, содержащий 2-10 мг/м2 дигидрогена гексафтортитана и 2-10 мг/м2 гексафторциркониевой кислоты,

последовательно наносят на поверхность конверсионного слоя термоотверждаемый грунтовочный состав и термоотверждаемый полимерный состав и

доводят температуру стального листа до комнатной температуры, после завершения отверждения термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава, причем

в качестве термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава выбирают такие составы, что разница температур термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава при температуре, при которой обеспечивается отверждение, составляет 0-5°С, а

разница времени отверждения термоотверждаемого грунтовочного состава и термоотверждаемого полимерного состава после их нанесения на поверхность конверсионного слоя составляет 0-10 секунд.

2. Способ по п. 1, отличающийся тем, что перед нанесением на поверхность конверсионного слоя термоотверждаемого грунтовочного состава доводят температуру стального листа до температуры 20-25°С.

3. Способ по п. 1, отличающийся тем, что лист выполнен из холоднокатаной отожженной, холоднокатаной не отожженной или горячекатаной конструкционной стали.

4. Способ по п. 1, отличающийся тем, что в ванну с расплавом добавляют слитки из цинкового сплава с содержанием, мас. %: магния 1,2-3,0, алюминия 1,2-2,0, примесей не более 0,5 и цинк - остальное, по мере расходования расплава на формирование покрытия листа.

5. Способ по п. 1, отличающийся тем, что водная суспензия щелочной соли содержит 1,0-3,0 г/л анионного поверхностно-активного вещества.

6. Способ по п. 1, отличающийся тем, что обеспечивают осаждение 3-12 мг/м2 титана в нанесенном конверсионном слое.

7. Способ по п. 1, отличающийся тем, что в качестве полимерного состава используют декоративную эмаль на основе полиэфира, полиэфира сшитого меламином, полиуретана, поливинилденфторидов (ПВДФ), в том числе полиуретана и полиэфиров в сморщенном и текстурированном исполнении, а также содержащих акрилатные и/или эпоксидные смолы.



 

Похожие патенты:

Изобретение относится к области термохимического восстановления корродированных металлических поверхностей и может быть использовано в химической, газовой, строительной, транспортной, автомобильной, а также при проведении реставрационных работ объектов и памятников культуры. Осуществляют нанесение на поверхность изделия слоя композиции на основе кислородсодержащих полимеров в виде поливинилового спирта или поливинилацетата толщиной до 2-3 мм с последующей термообработкой восстанавливаемой поверхности при температуре 450-800°С в течение 2-15 минут и охлаждением изделия на воздухе до температуры, не превышающей 100°С, после чего восстанавливаемую поверхность очищают от остатков деструкции упомянутой композиции и повторно наносят упомянутую композицию на стальную поверхность, при этом цикл, включающий нанесение упомянутой композиции, термообработку, охлаждение, повторяют до полного восстановления корродированной стальной поверхности.

Изобретение относится к поверхностной обработке механических деталей, выдерживающих жесткие условия эксплуатации, и может быть использовано в авиационных двигателях, в частности в камерах сгорания, турбинах высокого давления и элементах выпуска отработавших газов. Детали из композитного материала с керамической матрицей содержат защитную структуру, при этом она содержит слой покрытия с постепенно меняющимся составом, этот слой покрытия с постепенно меняющимся составом содержит по меньшей мере одну фазу из кремния и одну фазу из алюминия, пропорции которых изменяются в зависимости от соответствующей высоты слоя, первая высота слоя покрытия с постепенно меняющимся составом соответствует составу без содержания кремния, вторая высота соответствует составу без содержания алюминия.

Изобретение относится к способу получения покрытия на элементах коаксиального СВЧ-переключателя из алюминиево-магниевого сплава АМг6, которые могут быть использованы в сфере авиации, космоса и других отраслей промышленности. Проводят первоначальный отжиг указанных элементов в муфельной печи при температуре 330°С в течение одного часа.

Изобретение относится к режущему инструменту с покрытием, содержащему основу и покрытие, при этом покрытие содержит внутренний мультислой α-Al2O3 и наружный монослой α-Al2O3, толщина наружного монослоя α-Al2O3 составляет 1-10 μм, предпочтительно 3-5 μм, и толщина внутреннего мультислоя α-Al2O3 составляет менее чем или равна 35% от суммы толщины внутреннего мультислоя α-Al2O3 и толщины наружного монослоя α-Al2O3, и при этом упомянутый мультислой α-Al2O3 состоит из чередующихся подслоев α-Al2O3, и подслоев TiCO, TiCNO, AlTiCO или AlTiCNO, причем упомянутый внутренний мультислой α-Al2O3 содержит по меньшей мере 5 подслоев α-Al2O3, и по меньшей мере один слой из TiC, TiN, TiAlN или TiCN, расположенный между основой и внутренним мультислоем α-Al2O3.
Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера лопатки компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Способ включает упрочняющую обработку, полирование и ионно-имплантационную обработку пера лопатки с последующим нанесением на перо лопатки ионно-плазменного многослойного покрытия в виде заданного количества пар слоев в виде слоя титана с ванадием и слоя соединений титана с ванадием и азотом.

Изобретение относится к области термоядерной техники и может быть использовано для создания приемной пластины дивертора токамака, основанного на концепции текущего слоя жидкого лития. Способ создания медного покрытия на стальной фольге для приемной пластины дивертора токамака включает размещение образца в зоне обработки, создание вакуума в зоне обработки, очистку поверхности ионами инертного газа, осаждение промежуточного слоя из меди в магнетронном разряде постоянного тока, горящем в среде инертного газа при мощности разряда 1,0-2,5 кВт, и последующее создание основного покрытия из меди, при этом очистку поверхности образца осуществляют ионами аргона в плазме аномального тлеющего разряда при напряжении разряда до 700 В, мощности разряда до 2,5 кВт и рабочем давлении 1,0 Па в течение времени до 30 минут, при нагреве образца до температуры до 500°С, осаждение промежуточного слоя меди осуществляют на нагретую свыше 500°С поверхность образца в течение периода времени более 60 мин, после чего образец охлаждают в среде аргона до достижения комнатной температуры, развакуумируют, покрывают всю поверхность образца с осажденным на него промежуточным слоем медной стружкой, создают вакуум, обрабатывают поверхность образца вместе со стружкой в плазме аномального тлеющего разряда при напряжении разряда до 700 В, мощности разряда до 2,5 кВт и рабочем давлении 1,0 Па в течение времени до 30 мин, и создают основное покрытие из меди толщиной до 10 мм методом нагрева образца, покрытого медной стружкой, с помощью нагревателя до температуры плавления меди, после чего нагреватель выключают и образец охлаждают в среде аргона до достижения им комнатной температуры.

Изобретение относится к режущему инструменту с покрытием. Режущий инструмент с покрытием содержит основу и покрытие, причем покрытие содержит многослойную систему, состоящую из чередующихся подслоев κ–Al2O3 и подслоев TiN, TiC, TiCN, TiCO или TiCNO, причем упомянутая многослойная система содержит по меньшей мере три подслоя κ–Al2O3 и проявляет рентгенодифрактограмму в диапазоне углов сканирования θ–2θ 15–140°, на которой дифракционный пик 002 (площадь пика) является самым сильным пиком, относящимся к подслоям κ–Al2O3 многослойной системы.

Изобретение относится к области металлургии, а именно к способу нанесения теплозащитного износостойкого покрытия на детали из чугуна и стали. Проводят абразивно-струйную обработку деталей карбидом кремния с размером частиц 1,5 мм.

Изобретение относится к режущему инструменту с покрытием, включающему основу и покрытие, причем покрытие содержит многослойную систему α-Al2O3, состоящую из чередующихся подслоев α-Al2O3 и подслоев TiCO, TiCNO, AlTiCO или AlTiCNO, упомянутая многослойная система α-Al2O3 содержит по меньшей мере 5 подслоев α-Al2O3, полная толщина упомянутой многослойной системы α-Al2O3 составляет 1-15 мкм, период многослойной системы α–Al2O3 составляет 50-900 нм, при этом режущий инструмент с покрытием дополнительно содержит первый слой α-Al2O3, находящийся между основой и многослойной системой α-Al2O3, в непосредственном контакте с многослойной системой α-Al2O3, причем толщина упомянутого слоя α-Al2O3 составляет < 1 мкм, и многослойная система α-Al2O3 проявляет рентгенодифрактограмму в диапазоне углов сканирования θ-2θ 20°-140°, на которой отношение интенсивности дифракционного пика 0012 (площади пика), I(0012), к интенсивностям дифракционного пика 113 (площади пика), I(113), дифракционного пика 116 (площади пика), I(116), и дифракционного пика 024 (площади пика), I(024), составляет I(0012)/I(113) > 1, I(0012)/I(116) > 1 и I(0012)/I(024) > 1.

Изобретение относится к области материаловедения, обработке поверхности металлов и может быть использовано в медицине для повышения износостойкости и антикоррозионных свойств изделий из стали, например, медицинских имплантатов. Способ получения износостойкого антикоррозионного покрытия на изделии из нержавеющей стали марки AISI 316L (03Х17Н14М3) включает создание на изделии поверхностного сплава на основе Ti в едином вакуумном цикле путем чередования операций напыления титановой пленки методом магнетронного распыления и последующего ее жидкофазного перемешивания с материалом изделия с помощью облучения низкоэнергетическим сильноточным электронным пучком (НСЭП) с длительностью импульса 2-3 мкс, количеством импульсов от 3 до 5 и с плотностью энергии электронов 2-3 Дж/см2.

Изобретение относится к средствам противокоррозионной защиты, в частности к ингибированным составам для нанесения покрытий, и может быть использовано для защиты изделий и конструкций от атмосферной коррозии как при эксплуатации, так и в период хранения, транспортировки. Противокоррозионная комбинированная система покрытия стального изделия характеризуется тем, что она содержит фосфатный слой с упакованным неорганическим ингибитором анодного типа, который получен обработкой поверхности изделия раствором фосфатирующего состава «НОТЕХ», содержащего неорганический ингибитор анодного типа, консервационный слой индустриального масла, содержащий водо-маслорастворимый ингибитор коррозии Н-М-1, или лакокрасочное покрытие эмалью ЭП-1236, первый грунтовочный слой которой содержит водомаслорастворимый ингибитор коррозии Н-М-1.
Наверх