Теплогенератор

Изобретение относится к области теплонасосных установок, применяемых для преобразования низкопотенциальной теплоты в системах отопления и горячего водоснабжения. Соединенные последовательно компрессор парокомпрессионного теплового насоса, конденсатор парокомпрессионного теплового насоса, дроссельный вентиль парокомпрессионного теплового насоса, испаритель парокомпрессионного теплового насоса образуют контур парокомпрессионного теплового насоса, заполненный хладагентом. Тепловой двигатель соединен с компрессором парокомпрессионного теплового насоса через вал. Соединенные последовательно генератор пара абсорбционного теплового насоса, конденсатор абсорбционного теплового насоса, дроссельный вентиль абсорбционного теплового насоса, испаритель абсорбционного теплового насоса, абсорбер абсорбционного теплового насоса, заполненный абсорбентом, циркуляционный насос абсорбционного теплового насоса, расширительный клапан абсорбционного теплового насоса образуют контур абсорбционного теплового насоса, заполненного хладагентом и абсорбентом. Расширительный клапан абсорбционного теплового насоса расположен между абсорбером абсорбционного теплового насоса и генератором пара и подключен параллельно циркуляционному насосу абсорбционного теплового насоса. Тепловой двигатель соединен с генератором пара абсорбционного теплового насоса контуром охлаждения теплового двигателя. Конденсатор парокомпрессионного теплового насоса подключен последовательно к конденсатору абсорбционного теплового насоса и к теплообменнику уходящих газов, образующим контур системы теплоснабжения. Технический результат заключается в совместном использовании энергии топлива и возобновляемой низкопотенциальной энергии окружающей среды для эффективного получения теплоты. 1 ил.

 

Изобретение относится к области теплотехники, а именно к области теплонасосных установок, применяемых для преобразования низкопотенциальной теплоты в системах отопления и горячего водоснабжения.

Известен теплогенератор, описанный в патенте RU, «двухконтурный настенный газовый котел» № RU168389, опубл. 2017.02.01, МПК F24H 1/00. Котел, содержащий вентилятор, главный теплообменник, контрольный датчик температуры, газовую горелку, электрозапальник, датчик наличия факела, блок электронного регулирования, датчик протока нагреваемой воды для горячего водоснабжения, газовый вентиль, вторичный теплообменник, контрольный датчик температуры, датчик температуры нагреваемой воды для горячего водоснабжения, напорную трубу контура отопительной воды, обратную трубу контура отопительной воды, подающую трубу контура нагреваемой воды для горячего водоснабжения, обратную трубу контура для горячего водоснабжения, запорные электромагнитные клапаны на напорной и обратной трубах отопления, запорный электромагнитный клапан перед вторичным теплообменником, датчик давления отопительной воды, датчик работы вентилятора, автоматический выпускной клапан, предохранительный клапан, водяной насос, трубу подпитки, обратный клапан, подпиточный насос, бак с подпиточной водой, механизм автоматического перемещения электрозапальника, имеется газоанализатор окислов азота в продуктах сгорания, имеется датчик температуры наружного воздуха, подаваемого на горение, имеется газоанализатор состава топливного газа, подаваемого на горение.

Недостатками данного теплогенератора являются:

- высокий расход топлива на производство и передачу тепловой энергии потребителю;

- малоэффективное использование теплоты получаемой в результате сжигания органического топлива за счет потерь с уходящими газами;

- отсутствие возможности использования низкопотенциальных источников энергии;

- повышенный выброс в атмосферу вредных веществ из-за высокого расхода топлива;

Прототипом изобретения принимается общеизвестный тепловой насос компрессионного типа, описанный в статье на интернет ресурсе http://decentral.web-box.ru/stati/teplovyj-nasos/teplovoj-nasos-princip-raboty/.

Основными узлами теплового насоса являются: соединенные последовательно компрессор (у нас компрессор парокомпрессионного теплового насоса), конденсатор (у нас конденсатор парокомпрессионного теплового насоса), дроссельный вентиль (у нас дроссельный вентиль парокомпрессионного теплового насоса), испаритель (у нас испаритель парокомпрессионного теплового насоса).

Недостатками данного прототипа являются:

- низкая эффективность работы установки;

- отсутствует возможность использовать органическое топливо.

На сегодняшний день существует множество видов теплогенераторов, которые не имеют возможности использовать альтернативные источники энергии. Установки, работающие с использованием альтернативных источников энергии, используют в основном электрический двигатель для привода компрессора, что в итоге приводит к малой экономичности установки. На рынке представлены установки и абсорбционного типа, для них необходима высокопотенциальная тепловая энергия, которая применима далеко не во всех случаях.

Технический результат заключается в совместном использовании энергии топлива и возобновляемой низкопотенциальной энергии окружающей среды для эффективного получения теплоты.

Технический результат изобретения достигается за счет того, что теплогенератор, содержащий соединенные последовательно компрессор парокомпрессионного теплового насоса, конденсатор парокомпрессионного теплового насоса, дроссельный вентиль парокомпрессионного теплового насоса, испаритель парокомпрессионного теплового насоса и образующие контур парокомпрессионного теплового насоса заполненный хладагентом, отличающийся тем, что дополнительно содержит тепловой двигатель соединенный с компрессором парокомпрессионного теплового насоса через вал, соединенные последовательно генератор пара абсорбционного теплового насоса, конденсатор абсорбционного теплового насоса, дроссельный вентиль абсорбционного теплового насоса, испаритель абсорбционного теплового насоса, абсорбер абсорбционного теплового насоса заполненный абсорбентом, циркуляционный насос абсорбционного теплового насоса, расширительный клапан абсорбционного теплового насоса, образуют контур абсорбционного теплового насоса заполненного хладагентом и абсорбентом, причем расширительный клапан абсорбционного теплового насоса расположен между абсорбером абсорбционного теплового насоса и генератором пара и подключен параллельно циркуляционному насосу абсорбционного теплового насоса, тепловой двигатель соединен с генератором пара абсорбционного теплового насоса контуром охлаждения теплового двигателя, конденсатор парокомпрессионного теплового насоса подключен последовательно к конденсатору абсорбционного теплового насоса и к теплообменнику уходящих газов образующие контур системы теплоснабжения.

На фиг. 1 представлена схема теплогенератора, состоящая из теплового двигателя 1 соединенный валом 2, с компрессором парокомпрессионного теплового насоса 3, конденсатора парокомпрессионного теплового насоса 4, дроссельным вентилем парокомпрессионного теплового насоса 5, испарителя парокомпрессионного теплового насоса 6, контура парокомпрессионного теплового насоса 7 заполненного хладагентом, источника низкопотенциальной энергии 8, контура охлаждения теплового двигателя 9 заполненного антифризом, генератора пара абсорбционного теплового насоса 10, конденсатора абсорбционного теплового насоса 11, дроссельного вентиля абсорбционного теплового насоса 12, испарителя абсорбционного теплового насоса 13, абсорбера абсорбционного теплового насоса 14, циркуляционного насоса абсорбционного теплового насоса 15, расширительного клапана абсорбционного теплового насоса 16, контура абсорбционного теплового насоса 17 заполненного хладагентом и абсорбентом, теплообменника уходящих газов 18, контура системы теплоснабжения 19.

Теплогенератор работает следующим образом. Тепловой двигатель 1 вырабатывает механическую энергию и передает ее через вал 2 компрессору парокомпрессионного теплового насоса 3, в нем происходит сжатие хладагента за счет чего повышается температура и под действием компрессора парокомпрессионного теплового насоса 3 выталкивается в конденсатор парокомпрессионного теплового насоса 4. В конденсаторе парокомпрессионного теплового насоса 4 нагретый хладагент отдает тепло контуру системы теплоснабжения 19, переходит в жидкое состояние и проходит дроссельный вентиль парокомпрессионного теплового насоса 5 за счет которого снижается давление и хладагент поступает в испаритель парокомпрессионного теплового насоса 6 в разреженном состоянии, где испаряется за счет тепла, полученного от источника низкопотенциальной теплоты 8 и попадает в компрессор парокомпрессионного теплового насоса 3, затем цикл повторяется. Соединенные последовательно компрессор парокомпрессионного теплового насоса 3, конденсатор парокомпрессионного теплового насоса 4, дроссельный вентиль парокомпрессионного теплового насоса 5, испаритель парокомпрессионного теплового насоса 6, образуют контур парокомпрессионного теплового насоса 7 заполненный хладагентом. Тепловой двигатель 1 вырабатывает тепловую энергию, охлаждение двигателя происходит с помощью контура охлаждения теплового двигателя 9 за счет передачи теплоты генератору пара абсорбционного теплового насоса 10. В генераторе пара абсорбционного теплового насоса 10 осуществляется выпаривание хладагента, и он поступает в конденсатор абсорбционного теплового насоса 11, а абсорбент самотеком перетекает в абсорбер абсорбционного теплового насоса 14 через расширительный клапан абсорбционного теплового насоса 16. В конденсаторе абсорбционного теплового насоса 11 нагретый хладагент отдает тепло контуру системы теплоснабжения 19, переходит в жидкое состояние и проходит дроссельный вентиль абсорбционного теплового насоса 12 за счет которого снижается давление и хладагент поступает в испаритель абсорбционного теплового насоса 13 в разреженном состоянии, где испаряется за счет тепла, полученного от источника низкопотенциальной теплоты 8. После испарения хладагент абсорбционного теплового насоса попадает в абсорбер абсорбционного теплового насоса 14 и его пары поглощаются раствором абсорбента отдавая ему скрытую теплоту парообразования. Получившийся разбавленный раствор из абсорбера абсорбционного теплового насоса 14 циркуляционным насосом абсорбционного теплового насоса 15 перекачивается в генератор пара абсорбционного теплового насоса 10, затем цикл повторяется. Соединенные последовательно генератор пара абсорбционного теплового насоса 10, конденсатор абсорбционного теплового насоса 11, дроссельный вентиль абсорбционного теплового насоса 12, испаритель абсорбционного теплового насоса 13, абсорбер абсорбционного теплового насоса 14 заполненный абсорбентом, генератор пара абсорбционного теплового насоса 10, расширительный клапан абсорбционного теплового насоса 16 и циркуляционный насос абсорбционного теплового насоса 15 соединенный с абсорбером абсорбционного теплового насоса 14 заполненный абсорбентом, генератор пара абсорбционного теплового насоса 10 образуют контур абсорбционного теплового насоса 17 заполненный хладагентом и абсорбентом. Контур системы теплоснабжения 19 забирает теплоту с конденсатора парокомпрессионного теплового насоса 4, затем теплоноситель забирает теплоту с конденсатора абсорбционного теплового насоса 11, далее теплоноситель догревается в теплообменнике уходящих газов 18 и после этого отправляется в систему отопления для нужд отопления и горячего водоснабжения. Таким образом, достигается совместное использование энергии топлива и возобновляемой низкопотенциальной энергии окружающей среды для конечного получения теплоты.

Теплогенератор, содержащий соединенные последовательно компрессор парокомпрессионного теплового насоса, конденсатор парокомпрессионного теплового насоса, дроссельный вентиль парокомпрессионного теплового насоса, испаритель парокомпрессионного теплового насоса и образующие контур парокомпрессионного теплового насоса, заполненный хладагентом, отличающийся тем, что дополнительно содержит тепловой двигатель, соединенный с компрессором парокомпрессионного теплового насоса через вал, соединенные последовательно генератор пара абсорбционного теплового насоса, конденсатор абсорбционного теплового насоса, дроссельный вентиль абсорбционного теплового насоса, испаритель абсорбционного теплового насоса, абсорбер абсорбционного теплового насоса, заполненный абсорбентом, циркуляционный насос абсорбционного теплового насоса, расширительный клапан абсорбционного теплового насоса образуют контур абсорбционного теплового насоса, заполненного хладагентом и абсорбентом, причем расширительный клапан абсорбционного теплового насоса расположен между абсорбером абсорбционного теплового насоса и генератором пара и подключен параллельно циркуляционному насосу абсорбционного теплового насоса, тепловой двигатель соединен с генератором пара абсорбционного теплового насоса контуром охлаждения теплового двигателя, конденсатор парокомпрессионного теплового насоса подключен последовательно к конденсатору абсорбционного теплового насоса и к теплообменнику уходящих газов, образующим контур системы теплоснабжения.



 

Похожие патенты:

Изобретение относится к теплогенерирующему устройству и способу выработки тепла. Согласно настоящему изобретению предложены теплогенерирующее устройство и способ выработки тепла, обеспечивающие выработку избыточного тепла.

Изобретение относится к теплоэнергетике, предназначено для одновременной выработки электрической и тепловой энергии, а также холода в виде захоложенной воды. Тригенерационная установка содержит парокомпрессионный тепловой насос, конденсатор которого технологически включен в контур испарительного теплообменника абсорбционного насоса, в котором в генераторе теплота подводится прямым сжиганием топлива, газотурбинный агрегат, газоводяной теплообменник, абсорбционный бромистолитиевый тепловой насос, электроприводной компрессор, регенеративный теплообменник, конденсатор, испаритель, переохладитель, дроссель, абсорбер, испарительный теплообменник, топку генератора, охладитель, вентилятор забора воздуха, осевой компрессор, камеру сгорания, газовую турбину, электрогенератор, циркуляционный насос.

Изобретение относится к области теплоэнергетики и может быть использовано для улучшения работы теплонасосных установок на объектах их производства, в проектных бюро, а также на производственных предприятиях холодильного парокомпрессионного оборудования. Система для настройки теплового насоса включает термометры, манометры, ваттметр, емкость-источник, соединенную со стороной теплоносителя с тепловым насосом через его испаритель.

Изобретение относится к устройству и способу работы теплового насоса, в частности, для нагрева внутреннего пространства транспортного средства. Компрессор (V), конденсатор (KON), дроссельный клапан (DV) и испаритель (VER) размещены в циркуляционном контуре теплового насоса рабочей среды.

Изобретение относится к энергетике, в частности к способам получения тепловой энергии, и может быть использовано при создании теплоэнергетических систем. Способ получения тепловой энергии использует поле потенциалов природных источников, в качестве материального тела используют жидкость, по крайней мере на части траектории жидкость перемещают вдоль градиента гравитационного поля Земли с формированием в контуре восходящего и нисходящего потоков жидкости, для движения жидкости в контуре используют центробежный насос, формируют восходящий поток жидкости непосредственно над центробежным насосом, движение жидкости в восходящем потоке контура формируют со скоростью от 0,7 м/с до 1,7 м/с при перепаде высот в контуре более 5 м.

Изобретение относится к холодильной технике, а именно к абсорбционным холодильным машинам. Абсорбционная холодильная машина со встроенной теплонасосной установкой содержит блок генератора с первым конденсатором и блок абсорбера с первым испарителем.

Изобретение относится к теплоэнергетике, а именно к системам теплоснабжения зданий. Термоэлектронасос содержит подающий трубопровод (1) с термоэлектрическим блоком (3), соединенным электропроводкой с инвертором (4), аккумулятором (5) и электродвигателем насоса (6), установленным в трубопроводе (2).

Настоящее изобретение относится к конструкции термоэлектрического теплового насоса, в частности, для автомобильного транспортного средства. По меньшей мере в одном первом жидкостном контуре, одном втором жидкостном контуре и одном третьем жидкостном контуре, где первый теплообменник предоставлен для теплообмена между жидкостью первого жидкостного контура и жидкостью третьего жидкостного контура, где второй теплообменник предоставлен для теплообмена между жидкостью второго жидкостного контура и жидкостью третьего жидкостного контура, где в каждом случае один термоэлектрический элемент расположен между зонами теплообмена первого теплообменника и между зонами теплообмена второго теплообменника.

Изобретение относится к отопительным приборам и может использоваться в бытовых условиях. .

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений. Достигаемый технический результат - повышение эффективности использования холодильного потенциала технической воды, сокращение объемов хранилища технической воды и окислителя при сохранении срока режима полной изоляции, а также сбор и утилизация внутри специального фортификационного сооружения отработанных газов двигателя автономной электростанции, исключающих их выброс за пределы специального фортификационного сооружения в режиме полной изоляции.
Наверх