Датчик температуры

Изобретение относится к области электротехники. Предложен датчик температуры, содержащий источник постоянного тока и соединенные с ним первое звено, которое состоит из зависящего от температуры сопротивления, и второе звено, которое состоит из двух последовательно соединенных сопротивлений с положительным и отрицательным температурными коэффициентами. Входы первого и второго звеньев соединены с выходами источника постоянного тока, а выходы являются выходами датчика температуры, при этом сопротивление первого звена описывается формулой R1(T)=R(T0)+K(T-T0), а сопротивление второго звена подобрано таким образом, что равно сопротивлению первого звена при определенной температуре T0: R2(T)=R(T0), где R1(T) - сопротивление первого звена, R2(T) - сопротивление второго звена, R(T0) - сопротивление первого звена при определенной температуре T0, K - температурный коэффициент первого звена. При этом входы первого и второго звеньев соединены также с входами вольтметра для измерения разности напряжений звеньев при одинаковых постоянных токах, что выполняет функцию одноточечной калибровки. Технический результат - создание датчика температуры с лучшей точностью измерений. 3 ил.

 

Изобретение относится к области электротехники, а именно к датчикам температуры, и может быть использовано для измерения температуры интегральных схем.

Существует множество способов измерения температуры интегральных схем. Основная проблема многих способов - сильная зависимость передаточной характеристики датчика температуры от отклонений технологического процесса. Без калибровки датчики температуры могут иметь слишком большую погрешность измерений, превышающую десятки градусов.

В патенте US 20100259315 A1 описан источник независящего от температуры тока, в котором ток задают последовательно включенными сопротивлениями с положительным и отрицательным температурными коэффициентами (ТК), которые компенсируют друг друга.

Наиболее близким к заявленному изобретению является датчик температуры, описанный в патенте US 20190360872 A1, который измеряет температуру путем измерения напряжений на диодах, на которые подают заданные постоянные токи. Данный датчик температуры выбран в качестве прототипа заявленного изобретения.

Основным недостатком описанных выше аналога и прототипа является большая чувствительность выходных сигналов к отклонениям технологического процесса.

Техническим результатом изобретения является создание датчика температуры с лучшей точностью измерений, а именно с меньшей чувствительностью измерений к отклонениям технологического процесса, и меньшей погрешностью измерений, в случае отсутствия предварительной калибровки датчика температуры, за счет наличия независящего от температуры второго звена датчика температуры, которое выполняет функцию калибровки, компенсирующей отклонения технологического процесса.

Поставленный технический результат достигнут путем создания датчика температуры, содержащего источник постоянного тока и соединенные с ним первое звено, которое состоит из зависящего от температуры сопротивления, и второе звено, которое состоит из двух последовательно соединенных сопротивлений с положительным и отрицательным температурными коэффициентами, причем входы первого и второго звеньев соединены с выходами источника постоянного тока, а выходы являются выходами датчика температуры, при этом сопротивление первого звена описывается формулой R1(T)=R(T0)+K(T-T0), а сопротивление второго звена подобрано таким образом, что равно сопротивлению первого звена при определенной температуре T0: R2(T)=R(T0),

где R1(T) - сопротивление первого звена,

R2(T) - сопротивление второго звена,

R(T0) - сопротивление первого звена при определенной температуре T0,

K - температурный коэффициент первого звена, при этом входы первого и второго звеньев соединены также с входами вольтметра для измерения разности напряжений звеньев при одинаковых постоянных токах, что выполняет функцию одноточечной калибровки, исключая влияние R(T0) на результат измерения ΔR(T)=R1(T) - R2(T)=K(T-T0).

Для лучшего понимания заявленного изобретения далее приводится его подробное описание с соответствующими графическими материалами.

Фиг.1. Схема датчика температуры, выполненная согласно изобретению.

Фиг.2. График семейства передаточных характеристик (выходного напряжения) первого звена датчика температуры без учета напряжения второго звена и калибровки для типичных (ТТ) и крайних отклонений (SS и FF) параметров технологического процесса, выполненный согласно изобретению.

Фиг.3. График семейства передаточных характеристик (выходного дифференциального напряжения) датчика температуры для типичных (ТТ) и крайних отклонений (SS и FF) параметров технологического процесса, выполненный согласно изобретению.

Рассмотрим вариант выполнения заявленного изобретения (Фиг.1 - 3). Заявленный датчик температуры (Фиг.1) состоит из соединенных с источником постоянного тока 3 двух звеньев: первое звено 1 представляет собой зависящее от температуры сопротивление, а второе звено 2 - независящее от температуры сопротивление, которое является комбинацией последовательно соединенных двух сопротивлений с положительным и отрицательным температурными коэффициентами. Таким образом, в то время как сопротивление первого звена 1 зависит как от температуры, так и от отклонений технологического процесса, сопротивление второго звена 2 зависит только от отклонений технологического процесса (зависимость от температуры незначительна). В результате подбора значений сопротивлений достигают одинаковой зависимости сопротивлений первого и второго звеньев 1, 2 датчика температуры от отклонений технологического процесса. Это позволяет использовать сопротивление второго звена 2 датчика для калибровки первого звена 1. Для этого на оба звена подают одинаковые токи, и измеряют разность их напряжений с помощью вольтметра 4.

Математически идею заявленного изобретения описывают следующим образом. Если сопротивление датчика описывают формулой R(T)=R(T0)+K(T-T0), то для вычисления температуры необходимо знать значения T0, R(T0) и K. Если калибровку не производят, то значения этих коэффициентов должны быть предоставлены производителем (разработчиком) датчика, но при изготовлении датчика неизбежно отклонение значений коэффициентов от номинальных, что обуславливает большую погрешность измерения температуры. При одноточечной калибровке необходимо предварительное измерение сопротивления датчика при известной (точно измеренной) температуре T0. Это измерение позволяет исключить (или уточнить) значение R(T0). В этом случае точность измерения температуры будет выше, и основная погрешность будет обусловлена отклонением коэффициента K от номинального значения. Основная идея изобретения заключается в том, что датчик температуры состоит из двух звеньев: сопротивление первого звена 1 зависит от температуры и может описываться формулой R1(T)=R(T0)+K(T-T0), а сопротивление второго звена 2 не зависит от температуры и подобрано таким образом, что равно сопротивлению первого звена 1 при определенной температуре T0, т.е. равно R2(T)=R(T0). Сравнение сопротивлений звеньев датчика между собой (например, измерением разности напряжений при одинаковых постоянных токах) фактически выполняет функцию одноточечной калибровки, исключая влияние R(T0) на результат измерения ΔR(T)=R1(T) - R2(T)=K(T-T0).

По результатам моделирования отклонений технологического процесса измерение температуры только лишь по напряжению первого звена 1 датчика без учета напряжения второго звена 2 и калибровки (Фиг.2) невозможно ввиду недопустимо большой погрешности, составляющей десятки градусов. Измерение же дифференциального напряжения первого звена 1 относительно второго согласно изобретению (Фиг.3) позволяет без проведения калибровки датчика получить потенциальную точность измерения температуры в окрестности 0°С порядка ±1°, при отрицательных температурах около -28° порядка ±3° и при положительных температурах около 40° порядка ±8°. Подбор сопротивлений резисторов позволяет сместить точку минимальной потенциальной погрешности в область низких или высоких температур, что позволяет повысить точность измерения температуры.

Заявленное изобретение позволяет повысить точность измерения температуры без калибровки.

Хотя описанный выше вариант выполнения заявленного изобретения был изложен с целью иллюстрации заявленного изобретения, специалистам ясно, что возможны разные модификации, добавления и замены, не выходящие из объема и смысла заявленного изобретения, раскрытого в прилагаемой формуле изобретения.

Датчик температуры, содержащий источник постоянного тока и соединенные с ним первое звено, которое состоит из зависящего от температуры сопротивления, и второе звено, которое состоит из двух последовательно соединенных сопротивлений с положительным и отрицательным температурными коэффициентами, причем входы первого и второго звеньев соединены с выходами источника постоянного тока, а выходы являются выходами датчика температуры, при этом сопротивление первого звена описывается формулой R1(T)=R(T0)+K(T-T0), а сопротивление второго звена подобрано таким образом, что равно сопротивлению первого звена при определенной температуре T0: R2(T)=R(T0),

где R1(T) - сопротивление первого звена,

R2(T) - сопротивление второго звена,

R(T0) - сопротивление первого звена при определенной температуре T0,

K - температурный коэффициент первого звена, при этом входы первого и второго звеньев соединены также с входами вольтметра для измерения разности напряжений звеньев при одинаковых постоянных токах, что выполняет функцию одноточечной калибровки, исключая влияние R(T0) на результат измерения ΔR(T)=R1(T) - R2(T)=K(T-T0).



 

Похожие патенты:

Изобретение относится к способам защиты электросети от короткого замыкания посредством регулирования температуры клеммных соединений и может быть использовано в промышленной и бытовой аппаратуре для предотвращения пожароопасных ситуаций. Техническим результатом изобретения является получение оперативной и достоверной информации о тепловом состоянии клеммных соединений электрической цепи за счет исключения электрической связи между термодатчиками и клеммным соединением.

Изобретение относится к устройствам для измерения температуры и может быть использовано при определении температурных полей в различных средах и на поверхности твердых тел. В устройстве для измерения температурных полей, состоящем из последовательно включенных резистивно-диодных цепочек, подключенных по трехпроводной схеме к источникам постоянного тока и гармонического сигнала, включающем измерительный прибор, новым является то, что делитель напряжения в резистивно-диодной цепочке состоит из термисторов, которые являются термочувствительными элементами.

Изобретение относится к области технологии обработки аморфных ферромагнитных проводов (АФМ) и может быть использовано при определении температуры АФМ в процессе токового нагрева. Заявленное решение направлено на определение температурной зависимости сопротивления АФМ при токовом нагреве токами различной величины и формы.

Изобретение относится к способу защиты электросети от короткого замыкания посредством регулирования температуры клеммных соединений и может быть использовано в промышленной и в бытовой аппаратуре для предотвращения пожароопасных ситуаций. Техническим результатом является получение оперативной и достоверной информации о тепловом состоянии клеммных соединений электрической цепи за счет исключения электрической связи термодатчика с термощупом, а также использования инвертирующей схемы включения компаратора.

Изобретение относится к способу измерения температуры намотанного компонента, содержащему подачу известного постоянного тока в калибровочный провод (1) из резистивного материала; причем сопротивление калибровочного провода меняется вместе с температурой согласно известному закону; измерение разности потенциалов между зажимами (7a, 7b) упомянутого калибровочного провода; и этап вычисления, в ходе которого разность потенциалов преобразуется в среднюю температуру калибровочного провода; причем упомянутый калибровочный провод (1) намотан внутри катушки и уложен в ряд витков «Вперед» (5) и в ряд витков «Обратно» (6), объединенных попарно по существу с одинаковыми геометрической формой и местом расположения.

Изобретение относится к основным элементам электрического оборудования - соединительным устройствам, а именно, к средствам контроля состояния электрических контактных соединений, и может быть использовано при эксплуатационной диагностике электрооборудования. Устройство регистрации ослабления затяжки гайки резьбового контактного соединения содержит термобиметаллическую пластину с активным и пассивным слоями, взаимодействующую с компонентами указанного контактного соединения через тепловой контакт.

Изобретение относится к устройствам статирования температуры. .

Изобретение относится к медицинской технике, в частности к методам измерения температуры, и направлено на повышение быстродействия измерения температуры. .

Изобретение относится к медицинской технике, в частности - к методам измерения температуры, и направлено на повышение быстродействия измерения температуры. .

Изобретение относится к технике тепловизионных измерений и предназначено для применения в метрологии при градуировке, калибровке и поверке приборов тепловизионных.Заявлен способ градуировки приборов тепловизионных, в котором предварительно выполняют коррекцию спектральной чувствительности пиксельных элементов приемной матрицы прибора тепловизионного.
Наверх