Способ извлечения магний-аммоний-фосфата из сточных вод

Изобретение относится к химическим технологиям, а именно к способам извлечения магний-аммоний-фосфата из агропромышленных или хозяйственно-бытовых сточных вод. Способ включает подачу сточных вод в обогреваемый реактор. Для поддержания рН равного 8,0-10,0 в реактор добавляют корректирующий раствор гидроксида натрия. Сточные воды смешивают в реакторе с магнийсодержащим раствором, полученным из бишофита или альтернативного источника магния - гидросиликата магния и раствора соляной или серной кислоты. При этом указанные растворы вводят в сточные воды непрерывно для обеспечения молярного соотношения равного 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-. Химическое осаждение магний-аммоний-фосфата проводят при температуре от 15 до 30°С с добавлением затравки - фильтрата очищенной сточной воды, содержащего мелкодисперсный магний-аммоний-фосфат. Обеспечивается извлечение из агропромышленных сточных вод магний-аммоний-фосфата в виде крупного легко фильтруемого осадка, который можно использовать в качестве азотно-фосфорного удобрения. 2 з.п. ф-лы, 1 табл., 4 пр.

 

Изобретение относится к химическим технологиям, а именно к способам извлечения магний-аммоний-фосфата из агропромышленных (животноводческие фермы, коровники КРС, свинофермы, молокозаводы и др.) или хозяйственно-бытовых сточных вод с получением продукта (струвита), пригодного к использованию в качестве азото-фосфорного удобрения с пролонгированным действием, и может быть использовано на агропромышленных и сельскохозяйственных предприятиях в составе очистных сооружений, а так же на химических предприятиях и объектах коммунального хозяйства.

Ежегодный рост потребления комплексных минеральных удобрений в сельском хозяйстве требует увеличение их производства. Однако кратно нарастить производство исчерпаемых рудных фосфорсодержащих удобрений на основе апатитов и фосфоритов является труднореализуемой задачей. В тоже время сточные воды агропредприятий содержат от 150 до 1500 мг/л фосфат-ионов и аммонийного азота при непрерывном ежедневном сбросе. Осаждение указанных ионов в виде минерала струвита (магний-аммоний-фосфата) на стадии очистки агропромышленных стоков позволяет значительно снизить нагрузку на имеющиеся очистные сооружения или восполнить их отсутствие, а получаемый при этом струвит является эффективным комплексным NP+Mg удобрением с пролонгированным действием. Применение именно комплексных удобрений с управляемым высвобождением элементов и содержащих в своем составе магний обеспечивают ускорение роста и плодоношения сельскохозяйственных культур. Получаемое удобрение можно использовать в качестве альтернативы фосфорных сырьевых ресурсов (апатитов и фосфоритов) для производства комплексных NPK-удобрений. Модификацию высвобождения элементов в комплексных удобрениях осуществляют, как правило, путем гранулирования со связующим, введения в состав малорастворимых соединений - например, сульфата или фосфата кальция, а также добавлением аморфного кремнезема или цеолитов, препятствующих растворению целевых компонентов. Предлагаемый способ получения удобрения из агростоков использует принцип синтеза умеренно растворимого в воде кристаллогидрата комплексной соли аммония, магния и фосфорной кислоты (магний-аммоний-фосфата). Применение малорастворимых удобрений значительно снижает вероятность зафосфачивания почвы и попадание фосфат-иона и аммонийного азота в грунтовые воды при проливных дождях, обеспечивает равномерное питание растений в течение вегетативного периода.

Известен способ извлечения магний-аммоний-фосфата из сточных вод, содержащих мочу, включающий добавление в сточные воды биоугля и растворимой соли магния, перемешивание смеси при pH ниже 9-11 до тех пор, пока в растворе не образуется серо-белый осадок - магний-аммоний-фосфат (струвит), и он не прилипнет к поверхности биологического угля, проникая при этом внутрь него; прекращение перемешивания для осаждения магний-аммоний-фосфата и насыщенного биологического угля и сбор этого осадка, а также сушку собранного осадка и его грануляцию для получения удобрения с медленным высвобождением, богатого питательными элементами - углеродом, азотом и фосфором (патент CN104973919A 14.10.2015 г., МПК C05G3/00).

Недостатком данного изобретения является необходимость внесения для интенсификации осаждения магний-аммоний-фосфат чистых оксида магния или хлорида магния и пиролизного угля, длительный период синтеза - не менее 4 часов, длительное время отстаивания - не менее 2 часов. Кроме того, использование пиролизного угля приводит к получению в производимом удобрении большого количества балласта, который разбавляет в нем удельное содержание азота и фосфора, а значит, потребует увеличения нормы внесения в почву.

Известен способ извлечения магний-аммоний-фосфата (струвита) из сточных вод, включающий добавление в сточные воды, содержащие синтетический аммиак, растворимого фосфата и соли магния при концентрации аммонийного азота 1000-2065 мг/л; добавление щелочи к полученному твердому струвиту и проведение пиролиза при температуре от 80 до 100°C в течение 1-3 часов; обработку сточных вод с использованием твердого продукта пиролиза и добавление небольшого количества соли магния. При этом аммиак, образующийся в процессе пиролиза, абсорбируется разбавленным раствором кислоты. Полученная соль аммония используется в качестве сырья для производства удобрений, а извлеченный магний-аммоний-фосфат (струвит), который не может быть использован в цикле выделения аммиака, используется в качестве удобрения с замедленным высвобождением. (патент CN 102336504 A от 01.02.2012, МПК C02F 9/14, C05F 17/00, C05C 3/00).

Недостатком указанного способа является использование значительного количества дорогостоящего фосфата натрия/калия и соли магния, что повышает себестоимость получаемых удобрений. Кроме того, себестоимость получаемых удобрений повышают дополнительные энергозатраты, связанные с проведением операции пиролиза.

Наиболее близким способом к заявляемому изобретению по совокупности признаков является способ извлечения аммонийного азота из сточных вод в виде магний-аммоний-фосфата (струвита), включающий введение в сточную воду раствора, содержащего магний-ион и фосфат-ион, последующее корректирование значения кислотности рН путем дозирования раствора щелочи, проведение химической реакции при перемешивании, отделение осажденного магний-аммоний-фосфата (струвита) от воды путем фильтрации, отвод очищенной воды для последующей очистки. В качестве солей, содержащих магний-ион и фосфат-ион, соответственно используют хлорид магния и гидрофосфат натрия; оптимальное молярное соотношение элементов магния к азоту и к фосфору составляет 1,2:1:0,8; концентрация аммонийного азота входящего потока сточных вод составляет 210-1260 мг/л; раствор для корректирования кислотности рН представляет собой раствор гидроксида натрия с концентрацией от 2 до 6 моль/л (патент CN 103848540, МПК C02F 1/52. МПК C02F 9/14. 11.06.2014 г.)

Недостатком способа является использование дорогостоящего реагента (гидрофосфата натрия) для извлечения аммонийного азота из сточных вод. Другим недостатком способа является получение мелкодисперсного труднофильтруемого осадка струвита, имеющего более высокую растворимость в сравнении с крупнокристаллическим продуктом. Кроме того, получение мелкодисперсного осадка потребует использования энергозатратного фильтрационного оборудования для обезвоживания продукта.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа - добавление в сточные воды раствора, содержащего ионы магния, и корректирующего раствора гидроксида натрия для поддержания щелочной среды сточных вод рН 8,0-9,0, химическое осаждение магний-аммоний-фосфата при перемешивании в реакторе, отделение осажденного магний-аммоний-фосфата (струвита) от воды и отвод очищенной воды.

Сущность изобретения

Задача, на решение которой направлено заявляемое изобретение - получение более дешевого и менее энергозатратного комплексного азото-фосфорного удобрения в форме магний-аммоний-фосфата (струвита), имеющего пониженную растворимость в нейтральной среде.

Поставленная задача была решена за счет того, что в известном способе извлечения ионов аммония и фосфат-ионов из сточных вод, включающем добавление в реактор для поддержания щелочной среды сточных вод рН 8,0-9,0 корректирующего раствора и раствора, содержащего ионы магния, химическое осаждение магний-аммоний-фосфата при перемешивании, отделение осажденного магний-аммоний-фосфата от воды и отвод очищенной воды, первоначально осуществляют подогрев сточных вод в реакторе, в качестве корректирующего раствора используют раствор гидроксида натрия, который вводят в сточные воды для поддержания величины рН в реакторе равным 8,0-10,0, а в качестве раствора, содержащего ионы магния, используют предварительно приготовленный магний-содержащий раствор, полученный из бишофита или альтернативного источника магния - гидросиликата магния и раствора соляной кислоты/серной кислот; при этом указанные растворы вводят в сточные воды непрерывно для обеспечения молярного соотношения равного 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-; а химическое осаждение магний-аммоний-фосфата проводят при температуре от 15 до 30 град. С с добавлением затравки - фильтрата очищенной сточной воды, содержащего мелкодисперсный магний-аммоний-фосфат. Гидросиликат магния вводят в раствор соляной/серной кислоты в стехиометрическом количестве Mg2+:2Cl-/1Mg2+:1SO42-, необходимом для образования с соляной кислотой хлорида магния MgCl2/сульфата магния MgSO4. При недостатке фосфат иона в сточных водах, для обеспечения молярного соотношения 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-, его дополнительно добавляют в реактор во время химического осаждения магний-аммоний фосфата в форме раствора фосфорнокислого натрия.

Признаки заявляемого технического решения, являющиеся отличительными от признаков по прототипу, предварительный подогрев сточных вод в реакторе, использование в качестве корректирующего раствора - раствора гидроксида натрия, который вводят в сточные воды для поддержания величины рН в реакторе равным 8,0-10,0, обеспечивающее выделение избыточного аммиака из сточных вод, а в качестве раствора, содержащего ионы магния - предварительно приготовленного магнийсодержащего раствора, полученного из бишофита или альтернативного источника магния - гидросиликата магния и раствора соляной кислоты/серной кислот; причем указанные растворы вводят в сточные воды непрерывно для обеспечения молярного соотношения равного 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-; а химическое осаждение магний-аммоний-фосфата проводят при температуре от 15 до 30 град. С с добавлением затравки - фильтрата очищенной сточной воды, содержащего мелкодисперсный магний-аммоний-фосфат. Гидросиликат магния вводят в раствор соляной/серной кислоты в стехиометрическом количестве Mg2+:2Cl-/ 1Mg2+:1SO42-, необходимом для образования с соляной кислотой хлорида магния MgCl2/сульфата магния MgSO4. При недостатке фосфат иона в сточных водах, для обеспечения молярного соотношения 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-, его дополнительно добавляют в реактор во время химического осаждения магний-аммоний фосфата в форме раствора фосфорнокислого натрия.

Использование агростоков, содержащих большое количество аммонийного азота и фосфат ионов (более 150 мг/л), предварительный их подогрев и введение затравки (кристаллов мелкодисперсного магний-аммоний-фосфата) на стадии химического осаждения обеспечивают образование крупного легкофильтруемого осадка магний-аммоний-фосфата.

Использование в качестве сырья агропромышленных стоков и отказ от дорогостоящих источников фосфат-ионов значительно удешевляет способ. Щелочная среда большинства агростоков значительно сокращает необходимость внесения щелочных реагентов для корректировки значения рН среды при синтезе струвита. Использование в качестве магнийсодержащего реагента для осаждения магний-аммоний-фосфата реагентов - бишофита или кислотных вытяжек (соляно- или сернокислой) из серпентинита обеспечивает доступность для повсеместной реализации способа и снижает себестоимость продукта.

Получение умеренно растворимых в нейтральной среде и легкофильтруемых частиц магний-аммоний-фосфата осуществляют за счет циркуляции суспензии мелкодисперсного магний-аммоний-фосфата в реактор для доращивания размера кристаллов.

Введение в раствор перед осаждением магний-аммоний-фосфата гидросиликата магния соляной/серной кислоты в стехиометрическом количестве Mg2+:2Cl-/ 1Mg2+:1SO42-, необходимо для образования с соляной кислотой хлорида магния MgCl2/сульфата магния MgSO4, которые являются недорогими альтернативными источниками ионов магния. При недостатке фосфат иона в сточных водах для обеспечения молярного соотношения 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-, его дополнительно добавляют в реактор во время химического осаждения магний-аммоний фосфата в форме раствора фосфорнокислого натрия.

Магний-аммоний-фосфат, обладая умеренной растворимостью в нейтральной среде, интенсивно выпадает в осадок при наличии выраженного щелочного значения рН среды. Поэтому использование в качестве сырья агропромышленных стоков (например, стоков коровников крупного рогатого скота, свиноферм, мясоперерабатывающих предприятий и т.п.), которые имеют щелочную среду за счет разложения присутствующей в их составе мочевины, позволяет снизить необходимость внесения корректирующего щелочного раствора. Одновременное присутствие в составе стока аммонийного азота и фосфат иона в повышенных концентрациях, позволяет исключить или, по крайней мере, значительно ограничить, введение дорогостоящих фосфат-содержащих реагентов и, таким образом, значительно снизить затраты на реагенты. Применение в качестве магнийсодержащего реагента его природных широко распространенных источников - бишофита или серпентинита, обеспечивает доступность предлагаемого способа для повсеместного внедрения на агропредприятиях. Подогрев сточных вод, введение корректирующего рН раствора и магний-содержащего реагента на стадии синтеза для поддержания молярного соотношения 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-, и возврат мелких частиц магний-аммоний-фосфата в реактор после отделения осадка обеспечивают образование крупного легкофильтруемого осадка магний-аммоний-фосфата. Крупность осадка, в свою очередь влияет на доставку элементов для питания растений в почве, а значит, позволяет на стадии синтеза модифицировать высвобождение компонентов удобрения.

Благодаря умеренной растворимости в нейтральной среде полученное удобрение не уходит в грунтовые воды в период проливных дождей и остается в прикорневой зоне, продолжительно обеспечивая питание растений.

Магний-аммоний фосфат (струвит) - безбалластное комплексное удобрение с пролонгированным эффектом действия, содержащее N-9-11%, P2O5-40-46% и MgO-23-26%. Азот и фосфор содержится в струвите в слаборастворимой в воде, но усвояемой растениями форме. Струвит обладает хорошими физическими свойствами - сыпучий, не слеживается.

Предлагаемый способ осуществляют следующим образом.

Агропромышленные или хозяйственно-бытовые сточные воды после механической очистки и отстаивания подают в обогреваемый реактор, где они нагреваются до 15-30 град. С. Для поддержания щелочной среды сточных вод с рН равным 8,0-10,0 единиц в реактор, при необходимости, добавляют корректирующий раствор гидроксида натрия. Обработанные сточные воды смешивают в реакторе с предварительно приготовленным магнийсодержащим раствором, полученным из бишофита или альтернативного источника магния - гидросиликата магния (серпентинита) и раствора соляной кислоты/серной кислоты. Гидросиликат магния вводят в раствор соляной/серной кислоты в стехиометрическом количестве Mg:2Cl/ 1Mg:1SO42-, необходимом для образования с соляной кислотой хлорида магния MgCl2/сульфата магния MgSO4. Корректирующий и магний-содержащий растворы вводят в сточные воды непрерывно в молярном соотношении равном 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43- . Далее в реакторе при температуре от 15 до 30 град. С, при перемешивании проводят химический синтез магний-аммоний-фосфата. На этом этапе при недостатке фосфат иона в сточных водах для обеспечения молярного соотношения 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-, в реактор дополнительно дозируют в форме раствора фосфорнокислый натрий. Осажденный магний-аммоний-фосфат отделяют от воды методами декантации и фильтрации. Для доращивания мелкодисперсных кристаллов магний-аммоний фосфата, полученных при декантации, осуществляют возврат суспензии в реактор синтеза. Отфильтрованный крупнокристаллический осадок магний аммоний фосфата является готовым продуктом.

Осуществление изобретения

Пример 1. В качестве источника сырья для получения магний-аммоний-фосфата были использованы сточные воды агропредприятия крупнорогатого скота (КРС) с концентрацией ионов аммония 257 мг/л и фосфат ионов 105 мг/л. Значение pH сточных вод составляло 8,10 единиц.

Для получения магний-аммоний-фосфата использовали химический стакан с крышкой, объемом 600 мл, установленный на плитке с магнитной мешалкой. Исходный сток объемом 0,5 л нагревали в стакане до температуры 30 град. С, после чего корректировали значение pH до 9,04-9,52 единиц для создания условий выделения избыточного содержания аммонийного азота предварительно приготовленным раствором гидроксида натрия с концентрацией 3,2 г/л. Специалистам известно, что при подщелачивании аммонийная форма азота в сточной воде переходит в аммиачную и избыточное содержание аммиака выделяется в атмосферу, выравнивая при этом молярное соотношение между ионами аммония и фосфат иона в растворе.

Затем в подогретый сток последовательно вводили предварительно полученный из бишофита раствор хлорида магния с концентрацией 6,09 г/л, при постоянном перемешивании и постоянной температуре для формирования первичных частиц магний-аммоний-фосфата (зародышей) и их последующего роста. Величина молярного соотношения между ионами магния и аммония составляла 1:1. При введении раствора хлорида магния происходило образование светлого осадка.

Длительность перемешивания составляла 10 минут. После чего осадок отфильтровывали на фильтре «Белая лента». Осадок сушили при температуре 60°С в сушильном шкафу до постоянной массы.

Высушенный осадок взвешивали и подвергали анализу на ИК-Фурье спектрометре, а стоки после осаждения и фильтрации анализировали в аналитической лаборатории на содержание аммония. В результате был получен осадок магний-аммоний-фосфата. Результаты анализов приведены в таблице 1.

Пример 2. Способ получения магний-аммоний-фосфата проводили аналогично примеру 1 с тем отличием, что в качестве реагента для осаждения использовали солянокислую вытяжку из гидросиликата магния (серпентинита). Вытяжку предварительно получали путем обработки измельченного серпентинита с размером частиц 1-3 мм раствором соляной кислоты с плотностью 1,135 г/см3 до перехода рН среды с кислой на нейтральную.

Высушенный осадок взвешивали и подвергали анализу на ИК-Фурье спектрометре, а стоки после осаждения и фильтрации анализировали в аналитической лаборатории на содержание аммония. В результате получен осадок магний-аммоний-фосфата. Результаты анализов приведены в таблице 1.

Пример 3. Способ получения магний-аммоний-фосфата проводили аналогично примеру 2 с тем отличием, что в качестве реагента для осаждения использовали солянокислую вытяжку из гидросисликата магния (серпентинита) с последующим добавлением 3% раствора гипохлорита натрия в количестве 10 мл в качестве обеззараживающего реагента. Вытяжку предварительно получали путем обработки измельченного серпентинита с размером частиц 1-3 мм раствором соляной кислоты с плотностью 1,135 г/см3 до перехода рН среды с кислой на нейтральную.

Высушенный осадок взвешивали и подвергали анализу на ИК-Фурье спектрометре, а стоки после осаждения и фильтрации анализировали в аналитической лаборатории на содержание аммония. В результате получен осадок магний-аммоний-фосфата. Результаты анализов приведены в таблице 1.

Пример 4. Способ получения магний-аммоний-фосфата проводили аналогично примеру 2 с тем отличием, что в качестве реагента для осаждения использовали сернокислотную вытяжку из гидросиликата магния (серпентинита). Вытяжку предварительно получали путем обработки измельченного серпентинита с размером частиц 1-3 мм раствором серной кислоты с плотностью 1,27 г/см3 до перехода рН среды с кислой на нейтральную.

Высушенный осадок взвешивали и подвергали анализу на ИК-Фурье спектрометре, а стоки после осаждения и фильтрации анализировали в аналитической лаборатории на содержание аммония. В результате получен осадок магний-аммоний-фосфата, результаты анализов приведены в таблице 1.

Таблица 1

Вариант источника ионов магния Содержание аммонийного азота в стоках после извлечения магний-аммоний-фосфата,
мг/л
Масса полученного магний-аммоний-фосфата, мг
Бишофит+фосфат натрия 18±4 125,9
Бишофит+фосфат натрия+гипохлорит натрия 33±7 118,0
Сернокислая вытяжка из гидросиликата магния+фосфат натрия 1,8±0,4 134,4
Солянокислая вытяжка из гидросиликата магния +фосфат натрия 2,5±0,6 134,1

Из таблицы видно, что использование всех представленных реагентов - от бишофита до соляно- и сернокислых вытяжек из гидросиликата магния (серпентинита) с проведением корректировки среды стоков до рН 9,52 позволяет извлечь магний-аммоний-фосфат в виде рыхлого осадка и сократить содержание аммонийного азота в сточных водах. Полученные при этом частицы магний-аммоний-фосфата имеют вытянутую форму и размеры от 10 до 100 мкм, что облегчает условия их обезвоживания и обеспечивают пониженную растворимость в нейтральной среде.

Таким образом, предлагаемый способ позволяет извлекать из агропромышленных сточных вод магний-аммоний-фосфат в виде крупного легкофильтруемого осадка, который можно использовать в качестве азото-фосфорного удобрения. Благодаря повышенной крупности полученное удобрение обладает умеренной растворимостью в нейтральной среде, не уходит в грунтовые воды в период проливных дождей и остается в прикорневой зоне, обеспечивая питание растений продолжительное время. При использовании предлагаемого способа значительно снижается нагрузка на очистные сооружения и карты накопители сточных вод.

А использование в предлагаемом способе распространенных и недорогих минералов - бишофита или гидросиликата магния (серпентинита) в качестве источника ионов магния при извлечении магний-аммоний-фосфата позволяет снизить затраты на реагенты и их доставку.

1. Способ извлечения ионов аммония и фосфат-ионов из агропромышленных и хозяйственно-бытовых сточных вод, включающий добавление в реактор для поддержания щелочной среды сточных вод корректирующего раствора и раствора, содержащего ионы магния, химическое осаждение магний-аммоний-фосфата при перемешивании, отделение путем осажденного магний-аммоний-фосфата от воды и отвод очищенной воды, отличающийся тем, что первоначально осуществляют подогрев сточных вод в реакторе, в качестве корректирующего раствора используют раствор гидроксида натрия, который вводят в сточные воды для поддержания величины рН в реакторе равным 8,0-10,0; а в качестве раствора, содержащего ионы магния, используют предварительно приготовленный магний-содержащий раствор, полученный из бишофита или альтернативного источника магния - гидросиликата магния и раствора соляной или серной кислоты; при этом указанные растворы вводят в сточные воды непрерывно для обеспечения молярного соотношения равного 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-; а химическое осаждение магний-аммоний-фосфата проводят при температуре от 15 до 30°С с добавлением затравки - фильтрата очищенной сточной воды, содержащего мелкодисперсный магний-аммоний-фосфат.

2. Способ по п.1, отличающийся тем, что гидросиликат магния вводят в раствор соляной или серной кислоты в стехиометрическом количестве Mg2+:2Cl-/1Mg2+:1SO42-, необходимом для образования с соляной кислотой хлорида магния MgCl2 или с серной кислотой сульфата магния MgSO4.

3. Способ по п.1, отличающийся тем, что при недостатке фосфат иона в сточных водах для обеспечения молярного соотношения 0,9-1,1 Mg2+ : 1,0-1,6NH4+ : 1,0-1,1 PO43-, его дополнительно добавляют в реактор во время химического осаждения магний-аммоний-фосфата в форме раствора фосфорнокислого натрия.



 

Похожие патенты:

Изобретение может быть использовано в энергетике, химии и нефтепереработке. Бессточная система оборотного водоснабжения 1 для теплоиспользующего оборудования включает градирню 2, трубопроводы 4 и 5 подпиточной воды и продувочной воды, соответственно, и химводоочистку 6.

Изобретение относится к способу очистки сточных вод, в котором сточную воду подвергают электрохимической обработке в присутствии анолита, причем анолит добавляют в качестве добавки, где анолит является формой электролизованной воды, содержащей ионы и радикалы Н2О, Н+, Н3О+, О2, ОН-, HOCl, ClO-, HCl, Cl-, HClO3.

Изобретение относится к способу очистки фильтрационных вод полигонов захоронения твердых бытовых отходов, включающему их механическую фильтрацию, реагентную коагуляцию и флокуляцию, отстаивание, фильтрацию, электрохимическую обработку, обработку УФО, сорбционную очистку и обессоливание фильтрата, характеризующемуся тем, что механическую фильтрацию осуществляют через систему самоочищающихся фильтров, установленных последовательно с уменьшением размера пор от 10 до 1 мкм, перед реагентной коагуляцией и флокуляцией осуществляют корректировку предельной концентрации загрязнителей в фильтрате, в качестве электрохимической обработки осуществляют электрокоагуляцию и электрофлотацию, а перед электрокоагуляцией и электрофлотацией выполняют электромагнитную активацию фильтрата в проточном гидродинамическом реакторе, при этом фильтрат после электрокоагуляции и электрофлотации подвергают эффективному озонированию кислородно-озоновой смесью с последующим фильтрованием через песчано-угольную систему, обработку УФО совмещают с озонированием кислородно-озоновой смесью, а обессоливание осуществляют посредством электродиализа фильтрата.

Изобретение может быть использовано при очистке сточных вод. Способ сорбционного извлечения хрома (VI) из водных растворов на механоактивированном графите включает обработку раствора сорбентом с его последующим отделением.

Система относится к области водоотведения, а также системам (устройствам) определения параметров процесса обработки сточных вод. Раскрыта система определения концентрации веществ во вторичном отстойнике, позволяющая определять и поддерживать параметры процесса очистки сточных во вторичном отстойнике с учетом изменения параметров среды.

Изобретение относится к области водоотведения, а именно к способам моделирования аппаратов (устройств) биологической очистки сточных вод на канализационных очистных сооружениях. Способ определения концентрации рециркулирующего ила в системе биологической очистки сточных вод включает декомпозицию вторичного отстойника/отстойников на совокупность концентрически расположенных n подэлементов, имеющих первый и второй выходные потоки, n≥1, и расположенных по ходу движения входного потока от центра во все стороны в радиальном направлении.

Изобретение может быть использовано в промышленности, теплоэнергетике, коммунальном хозяйстве, сельском хозяйстве, медицине, быту, на транспорте и других отраслях, где требуется качественное изменение физических свойств жидкостей. Для обработки жидкостей использовано устройство (А1), состоящее из генератора импульсов (А2) и соединенного с ним колебательного контура (A3), индуктивность (L) которого излучает используемое для обработки жидких сред переменное электромагнитное поле в результате воздействия на колебательный контур (A3) импульсами постоянного тока от генератора импульсов (А2).

Изобретение относится к технологии очистки воды, в частности к очистке сточных вод от ионов тяжелых металлов сорбцией. Способ очистки сточных вод от ионов тяжелых металлов осуществляют путем отстаивания в присутствии сорбента, модифицированного кристаллами йодида калия.

Изобретение относится к машиностроению и может быть использовано для очистки и обеззараживания воды. Содержит корпус, ультрафиолетовые светодиоды, установленные на внутренней поверхности крышки.

Изобретение относится к машиностроению и может быть использовано для очистки и обеззараживания воды. Устройство содержит корпус, снабженный крышкой с уступами на ее нижней поверхности.

Изобретение относится к теплоэнергетике и может быть использовано для удаления газов из питательной воды систем отопления и горячего водоснабжения. Напорный центробежно-вихревой деаэратор содержит цилиндрический корпус 1 с центробежным завихрителем 2. Согласно изобретению на нижней поверхности неподвижного диска 3 центробежного завихрителя 2 закреплены сетчатые цилиндрические поверхности 5, расположенные концентрическими рядами, обращенные в сторону подвижного диска 11. В теле неподвижного диска 3 образованы отверстия 4 для выхода паровоздушной смеси в полость 10 над неподвижным диском 3, связанную с патрубком 9 отвода паровоздушной смеси. Патрубок 8 подачи исходной воды расположен в верхней части цилиндрического корпуса 1 над неподвижным диском 3, а его свободный конец изогнут и заведен в промежуток, образованный между приводным валом 6 и внутренним краем неподвижного диска 3 для подачи исходной воды непосредственно на подвижный диск 11. В непосредственной близости от дна 15 цилиндрического корпуса 1, в его боковых стенках образована кольцевая полость 16, в которой расположены напорные лопатки 22, закрепленные по внешнему краю подвижного диска 11. На подвижном диске 11 возле приводного вала 6, в углублениях между кольцевыми выступами 12 и перед напорными лопатками 22 дополнительно закреплены ускоряющие лопатки 14. По второму варианту центробежные завихрители 2 расположены друг под другом. Напорные лопатки 22, расположенные в кольцевой полости 16, закреплены по краю приводного диска 17, смонтированного на конце приводного вала 6, а перед входом в кольцевую полость 16 на приводном диске 17 закреплены ускоряющие лопатки 14. Между подвижным диском 11 нижнего центробежного завихрителя 2 и приводным диском 17 образована промежуточная полость 23. Техническим результатом изобретения является повышение функциональности и упрощение установок деаэрирования, значительное уменьшение габаритов, увеличение производительности, повышение надежности работы устройства. 2 н. и 6 з.п. ф-лы, 4 ил.
Наверх