Устройство для измерения прогиба протяжённого, вертикально направленного канала

Изобретение относится к измерительной технике, а именно к оборудованию для измерения прогиба протяженных, вертикально направленных каналов, в том числе технологических каналов ядерного реактора типа РБМК. Техническим результатом является упрощение изготовления устройства при одновременном сохранении точности измерения прогиба канала, в том числе технологического канала ядерного реактора. Устройство содержит гибкую полую несущую штангу, снабженную, как минимум, одним волоконно-оптическим датчиком, снабженным сердечником, закрытым герметичным трубчатым кожухом. Верхняя часть сердечника выполнена в виде установочной втулки с центральной цилиндрической полостью. Нижняя часть сердечника выполнена в виде центрального цилиндрического стержня. На центральном стержне сердечника выполнены продольные секторные вырезы, в которых закреплены ферулы с продольными сквозными каналами, а под нижним концом центрального стержня сердечника размещен гравитационный маятник. Через сквозные каналы ферул проведены волоконно-оптические линии, соединяющие каждый волоконно-оптический датчик с перестраиваемым лазером и фотоприемником, подключенными к компьютеру. Полость герметичного трубчатого кожуха волоконно-оптического датчика заполнена инертным газом. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к измерительной технике, а именно к оборудованию для измерения прогиба протяженных вертикально направленных каналов, в том числе технологических каналов ядерного реактора типа РБМК.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению для измерения прогиба протяженного вертикально направленного канала является устройство для измерения прогиба технологического канала ядерного реактора типа РБМК, содержащее несущий элемент, снабженный волоконно-оптическими датчиками (патент РФ №2626301, дата публикации 25.07.2017, МПК G01B 5/20).

В известном устройстве для измерения прогиба технологического канала ядерного реактора использованы волоконно-оптические датчики деформации, представляющие собой решетки Брэгга, внедренные в структуру радиационно-стойкого кварцевого оптического волокна на нескольких уровнях. Несущий элемент выполнен в виде гибкой полой несущей штанги, а волоконно-оптические датчики деформации расположены по периметру ее внутренней поверхности.

Недостатком известного устройства для измерения прогиба технологического канала ядерного реактора типа РБМК является сложная и трудоемкая технология изготовления волоконно-оптического датчика деформации, связанная с технически сложным выполнением в радиационно-стойком кварцевом оптическом волокне микроскопических точек с измененным показателем преломления, образующих решетку Брэгга.

Задачей настоящего изобретения является создание устройства для измерения прогиба вертикально направленного канала, позволяющего исключить при изготовлении сложную и трудоемкую технологическую операцию по выполнению в радиационно-стойком кварцевом оптическом волокне микроскопических точек с измененным показателем преломления, образующих решетку Брэгга, при одновременном сохранении возможности получения достоверной информации об изменении геометрических параметров канала, в том числе технологического канала ядерного реактора типа РБМК в процессе его эксплуатации.

Техническим результатом настоящего изобретения является упрощение изготовления устройства для измерения прогиба протяженного вертикально направленного канала при одновременном сохранении точности измерения прогиба канала, в том числе технологического канала ядерного реактора.

Указанный технический результат достигается тем, что в устройстве для измерения прогиба протяженного вертикально направленного канала, содержащем гибкую полую несущую штангу, снабженную, как минимум, одним волоконно-оптическим датчиком, согласно заявляемому изобретению волоконно-оптический датчик снабжен сердечником, закрытым герметичным трубчатым кожухом. Верхняя часть сердечника выполнена в виде жестко закрепленной на нижнем конце гибкой полой несущей штанги установочной втулки с центральной цилиндрической полостью, нижняя часть сердечника выполнена в виде коаксиального установочной втулке центрального цилиндрического стержня, в нижней части центральной полости установочной втулки сердечника вокруг наружного диаметра центрального стержня сердечника выполнены сквозные отверстия для установки волоконно-оптических линий, на центральном стержне сердечника выполнены продольные секторные вырезы, в которых закреплены конгруэнтные вырезам по форме ферулы с продольными сквозными каналами, а под нижним концом центрального стержня сердечника размещен с возможностью отклонения от продольной оси сердечника гравитационный маятник, связанный с помощью гибкой подвески с центральным стержнем сердечника и установленный с образованием зазора между обращенными друг к другу торцом гравитационного маятника и нижней поверхностью ферул, через продольные сквозные каналы ферул, сквозные отверстия и центральную полость установочной втулки сердечника и гибкую полую несущую штангу проведены волоконно-оптические линии, соединяющие каждый волоконно-оптический датчик с перестраиваемым лазером и фотоприемником, подключенными к компьютеру, при этом торцы нижних концов волоконно-оптических линий установлены в одной плоскости с нижней поверхностью ферул, а полость герметичного трубчатого кожуха волоконно-оптического датчика заполнена инертным газом.

Преимущественно устройство для измерения прогиба протяженного вертикально направленного канала может быть снабжено блоком первичной обработки информации, вход которого электрически связан с фотоприемником, а выход связан с компьютером.

Также герметичный трубчатый кожух устройства для измерения прогиба протяженного вертикально направленного канала может быть снабжен крышкой, герметично закрепленной на его нижнем свободном конце.

Гибкая подвеска, связывающая гравитационный маятник с центральным стержнем сердечника, может быть выполнена в форме шейки сердечника, образованной за счет утончения поперечного сечения сердечника с обеспечением возможности отклонения гравитационного маятника от продольной оси сердечника за счет силы тяжести в пределах зоны упругих деформаций материала шейки сердечника.

Предлагаемое техническое решение - устройство для измерения прогиба протяженного вертикально направленного канала, поясняется примером конкретного выполнения, описанным ниже. Приведенный пример не является единственно возможным, но наглядно демонстрирует возможность достижения данной совокупностью существенных признаков заявленного технического результата.

Сущность настоящего изобретения поясняется чертежами, где на фиг. 1 представлена общая схема устройства для измерения прогиба протяженного вертикально направленного канала, на фиг. 2 изображен общий вид волоконно-оптического датчика, на фиг. 3 представлена схема расположения волоконно-оптического датчика в прямой центральной трубке тепловыделяющей сборки ядерного реактора, на фиг. 4 показана схема расположения волоконно-оптического датчика в центральной трубке тепловыделяющей сборки с прогибом.

Устройство для измерения прогиба протяженного вертикально направленного канала содержит гибкую полую несущую штангу 1 и, как минимум, один волоконно-оптический датчик 2, который установлен на нижнем конце гибкой полой несущей штанги 1 и соединен волоконно-оптическими линиями с перестраиваемым лазером 3 и фотоприемником 4, которые через блок первичной обработки информации 5 подключены к компьютеру 6. Волоконно-оптический датчик 2 содержит закрытый герметичным трубчатым кожухом 7 сердечник.

Верхняя часть сердечника выполнена в виде установочной втулки 8, жестко закрепленной на нижнем конце гибкой полой несущей штанги 1. В установочной втулке 8 выполнена центральная цилиндрическая полость.

Нижняя часть сердечника выполнена в виде центрального стержня 9, коаксиального установочной втулке 7. В нижней части центральной полости установочной втулки 8 сердечника вокруг наружного диаметра центрального стержня 9 сердечника выполнены сквозные отверстия для установки волоконно-оптических линий 10.

На центральном стержне 9 сердечника также выполнены продольные секторные вырезы, в которых закреплены конгруэнтные этим вырезам по форме ферулы 11 с продольными сквозными каналами. Снизу под центральным стержнем 9 сердечника размещен с возможностью отклонения от продольной оси гравитационный маятник 12, связанный с помощью гибкой подвески 13 с центральным стержнем 9 сердечника и установленный с образованием зазора 14 между обращенными друг к другу верхним торцом гравитационного маятника 12 и нижней поверхностью ферул 11.

Через продольные сквозные каналы ферул 11, сквозные отверстия и центральную полость установочной втулки 8 сердечника и гибкую полую несущую штангу 1 проведены волоконно-оптические линии 10, соединяющие каждый волоконно-оптический датчик 2 с перестраиваемым лазером 3 и фотоприемником 4, подключенными к компьютеру 6.

Для обеспечения работы волоконно-оптического датчика торцы нижних концов волоконно-оптических линий 10 установлены в одной плоскости с нижней поверхностью ферул 11, а полость герметичного трубчатого кожуха 7 волоконно-оптического датчика 2 заполнена инертным газом, что обеспечивает защиту и предохранение датчика от воздействия окружающей среды и тем самым влияет на точность измерения.

Герметичный трубчатый кожух 7 может быть в одном из вариантов исполнения снабжен крышкой 15, установленной герметично и закрепленной на его нижнем свободном конце.

По одному из вариантов выполнения гравитационный маятник 12 может крепиться на нижнем торце центрального стержня 9 с помощью гибкой подвески 13, выполненной, например, из полиамидных материалов.

По другому варианту сердечник и маятник 12 могут быть выполнены из единой заготовки, при этом в нижней части центрального стержня 9 за счет утончения его поперечного сечения выполнена шейка, которая образует гибкую подвеску 13. Величина зазора 14, образованного между нижним торцом ферул 11 и верхним торцом гравитационного маятника 12, не превышает 0,5 мм, что ограничивает угол отклонения гравитационного маятника 12. При этом шейка сердечника, являющаяся вариантом выполнения гибкой подвески 13, при отклонениях гравитационного маятника от геометрической оси сердечника работает в зоне упругих деформаций, что обеспечивает работоспособность устройства.

Работа устройства поясняется на примере измерения прогиба технологического канала ядерного реактора.

Несущий элемент 1 устанавливается в исходное положение: гибкая полая несущая штанга 1 полностью опущена в центральную трубку 16 тепловыделяющей сборки. Измерение прогиба проводят при подъеме гибкой полой несущей штанги 1 с закрепленным на ее нижнем конце волоконно-оптическим датчиком 2 в центральной трубке 16 тепловыделяющей сборки, при этом на волоконно-оптический датчик 2 по волоконно-оптическим линиям 10 подают световой сигнал от перестраиваемого лазера 3, а отраженный гравитационным маятником 12 волоконно-оптического датчика 2 сигнал принимают фотоприемником 4.

При наличии прогиба технологического канала и, соответственно, прогиба центральной трубки 16 тепловыделяющей сборки гибкую полую несущую штангу 1 перемещают по искривленной центральной трубке 16 тепловыделяющей сборки, при этом геометрическая ось волоконно-оптического датчика 2 и его сердечника отклоняется от вертикали, а гравитационный маятник 12 волоконно-оптического датчика 2 под воздействием силы тяжести и за счет гибкого элемента 13 отклоняется на угол, пропорциональный углу отклонения геометрической оси волоконно-оптического датчика 2 от вектора силы тяжести.

При подъеме гибкой полой несущей штанги 1 происходит отклонение геометрической оси волоконно-оптического датчика 2 относительно вектора силы тяжести и, как следствие, отклонение нижней поверхности ферул 11 относительно гравитационного маятника 12 (угол а на фиг. 4), стремящегося принять вертикальное положение при наклонах волоконно-оптического датчика 2. В результате отклонения ферул 11 относительно маятника 12 происходит изменение геометрических параметров газового зазора 14, а именно происходит изменение расстояний между отражающей поверхностью гравитационного маятника 12 и нижними торцами волоконно-оптических линий 10, которые расположены в продольных сквозных каналах ферул 11 (величина зазора X11≠Х21 на фиг. 4), что вызывает сдвиг интерференционной картины отраженного светового сигнала (луча), который регистрируют посредством фотоприемника 4 и анализируют при помощи специализированных программных средств, установленных на компьютере 6. В результате измерений для каждой волоконно-оптической линии 10 регистрируют профилограммы газового зазора 14. На основании полученных профилограмм зазора 14 рассчитывают профилограммы величины и направления отклонения центральной трубки 16 тепловыделяющей сборки от вертикальной оси, а затем рассчитывают величины и направления прогиба технологического канала, в котором размещена тепловыделяющая сборка.

Проведенные испытания работы устройства показали высокую точность измерений с помощью предлагаемого устройства.

Предлагаемое устройство может быть использовано для контроля наличия и измерения величины прогиба (искривлений) длинномерных вертикально направленных каналов и труб в различных отраслях промышленности, а также для измерения прогиба технологических каналов ядерных реакторов, в том числе ядерного реактора типа РБМК.

Использование предлагаемого устройства позволяет с необходимой точностью выявить наличие и измерить прогиб центральной трубки тепловыделяющей сборки и на его основании определить прогиб технологического канала ядерного реактора.

1. Устройство для измерения прогиба протяженного, вертикально направленного канала, содержащее гибкую полую несущую штангу, снабженную, как минимум, одним волоконно-оптическим датчиком, отличающееся тем, что волоконно-оптический датчик снабжен закрытым герметичным трубчатым кожухом сердечником, верхняя часть которого выполнена в виде жестко закрепленной на нижнем конце гибкой полой несущей штанги установочной втулки с центральной полостью, нижняя часть сердечника выполнена в виде коаксиального установочной втулке центрального стержня, в нижней части центральной полости установочной втулки сердечника вокруг центрального стержня сердечника выполнены сквозные отверстия для установки волоконно-оптических линий, на центральном стержне сердечника выполнены продольные секторные вырезы, в которых закреплены конгруэнтные вырезам по форме ферулы с продольными сквозными каналами, а под нижним концом центрального стержня сердечника размещен с возможностью отклонения от продольной оси гравитационный маятник, связанный с помощью гибкой подвески с центральным стержнем сердечника и установленный с образованием зазора между обращенными друг к другу торцом гравитационного маятника и нижней поверхностью ферул, через продольные сквозные каналы ферул, сквозные отверстия и центральную полость установочной втулки сердечника и полую несущую штангу проведены волоконно-оптические линии, соединяющие каждый волоконно-оптический датчик с перестраиваемым лазером и фотоприемником, подключенными к компьютеру, при этом торцы нижних концов волоконно-оптических линий установлены в одной плоскости с нижней поверхностью ферул, а полость герметичного трубчатого кожуха волоконно-оптического датчика заполнена инертным газом.

2. Устройство для измерения прогиба протяженного, вертикально направленного канала по п. 1, отличающееся тем, что оно снабжено блоком первичной обработки информации, вход которого электрически связан с фотоприемником, а выход связан с компьютером.

3. Устройство для измерения прогиба протяженного, вертикально направленного канала по п. 1, отличающееся тем, что герметичный трубчатый кожух снабжен крышкой, герметично закрепленной на его нижнем свободном конце.

4. Устройство для измерения прогиба протяженного, вертикально направленного канала по п. 1, отличающееся тем, что гибкая подвеска, связывающая гравитационный маятник с центральным стержнем сердечника, выполнена в форме шейки сердечника, образованной за счет утончения поперечного сечения сердечника с обеспечением возможности отклонения гравитационного маятника от геометрической оси сердечника.



 

Похожие патенты:

Заявленная группа изобретений относится к контрольно-измерительному устройству и сварочному устройству зоны лазерной сварки. Контрольно-измерительное устройство содержит формирователь изображения и процессор.

Изобретение может быть использовано в измерительной технике для контроля изделий с шаровидной формой, для контроля формы и сбалансированности мячей, бильярдных шаров и др. Устройство содержит планшайбу 1, механически связанную с электроприводом 2, и блок 3 управления, подключенный к электроприводу, датчики, выполненные в виде фотоприемников 6 и световые излучатели 7 с фокусирующими элементами 8.

Производят сканирование движущегося груза с транспортным средством с использованием бесконтактного измерения с помощью двух лазерных дальномеров, с возможностью замера расстояния до точек поверхности груза и вычисление объема груза. Для этого лазерные дальномеры располагают на одной плоскости над движущимся сыпучим грузом, расположенным в платформе или кузове движущегося транспортного средства так, чтобы их плоскости сканирования были перпендикулярны друг другу и на такой высоте над движущимся транспортным средством, чтобы их поля зрения были ориентированы вниз и охватывали необходимую область проезда транспортного средства без затенений и во всем диапазоне.

Изобретение относится к области измерительной техники. Способ бесконтактного измерения линейных размеров вращающихся трехмерных объектов заключается в многократном формировании на поверхности контролируемого объекта зондирующей структурированной подсветки путем освещения поверхности контролируемого объекта пучком оптического излучения, каждый раз с управлением пространственной модуляцией интенсивности пучка оптического излучения, последовательной регистрации изображений искаженной рельефом поверхности контролируемого объекта структуры зондирующей подсветки и определения высоты рельефа поверхности контролируемого объекта по степени искажения изображения структуры зондирующей подсветки, а двух других координат - по положению искажений структуры подсветки в зарегистрированных изображениях.

Изобретение относится к области металлургических промышленных установок. Оборудование имеет трехмерную идентификационную метку (10), в частности перфорированную пластину или пластину, снабженную трехмерными рисунками.

Изобретение относится к технологии контроля рельефа изогнутых поверхностей материалов, в частности изогнутых поверхностей остеклений, приспособленных для транспортных средств, в частности, для автомобильной промышленности. Предмет изобретения составляют способ и система для измерения геометрических расхождений между изогнутыми поверхностями множества анализируемых материалов и изогнутой поверхностью эталонного материала.

Изобретение относится к устройству для детектирования объекта. Устройство для детектирования объекта, перемещаемого транспортирующим устройством через зону измерения устройства, содержащее указанное транспортирующее устройство, передающее устройство, выполненное с возможностью испускания измерительного излучения с частотой в гигагерцовом или терагерцовом диапазоне на внешний контур объекта, и приемное устройство, выполненное с возможностью приема измерительного излучения, отраженного от объекта при этом между передающим устройством и/или приемным устройством, с одной стороны, и зоной измерения, с другой стороны, расположена защитная решетка, прозрачная для измерительного излучения и проницаемая для газа, при этом в устройстве для детектирования объекта дополнительно предусмотрено продувочное устройство, выполненное с возможностью продувки защитной решетки продувочным газом.

Группа изобретений относится к области дефектоскопии кабелей во время их производства. Техническим результатом является обеспечение возможности непрерывного мониторинга качества.

Изобретение относится к области вычислительной техники для измерения размеров элементов с использованием устройства видеоконтроля. Технический результат заключается в повышении точности измерения глубины изображения.

Изобретение относится к области сканирования внутренней области отверстий. Сущность изобретения заключается в том, что способ измерения круглых отверстий в среде с ионизирующим излучением в прозрачной жидкости дополнительно содержит этапы, на которых до проведения калибровки и начала измерений проводят водонепроницаемую герметизацию сканирующего устройства, которое погружают во внешнюю жидкую среду, окружающую отверстие объекта, при этом давление, равное или превышающее давление внешней окружающей среды, поддерживают внутри корпуса с помощью закачиваемого газа или газовой смеси.

Изобретение относится к измерительной технике. Контрольно-оповестительная система определения состояния земляного полотна содержит кабельную трассу, состоящую из оптоволоконного сенсорного кабеля мониторинга земляного полотна, расположенного в глубине грунта основания земляного полотна, и контролирующую аппаратуру.
Наверх