Ядерная энергетическая установка с тяжелым жидкометаллическим теплоносителем с конфузором и перфорированным кронштейном на входе в главный циркуляционный насос

Изобретение относится к ядерной энергетической установке с жидкометаллическим свинцовым теплоносителем. Установка содержит реактор с жидкометаллическим свинцовым теплоносителем или его сплавами и систему защитного газа. Под свободным уровнем теплоносителя размещены активная зона, парогенераторы и средства циркуляции, например циркуляционные насосы. Камера подвода теплоносителя к главному циркуляционному насосу выполняется в виде конфузора с размещенным в нем вертикальным перфорированным кронштейном, а газовая полость камеры сообщается с конденсатором водяного пара в газовой системе. Техническим результатом является возможность оптимизировать поток на всасе рабочего колеса осевого насоса, исключая возможность образования вихрей, исключение попадания крупнодисперсных частиц на всас главного циркуляционного насоса, увеличение скорости удаления водяных паров из газовой полости возле камеры подвода теплоносителя к главному циркуляционному насосу. 1 ил.

 

Решение относится к ядерной технике и может быть использовано в реакторных установках с жидкометаллическим охлаждением.

Известна ядерная энергетическая установка, содержащая реактор с жидкометаллическим свинцовым теплоносителем или его сплавами, с размещенными под свободным уровнем теплоносителя активной зоной, парогенераторами, средствами циркуляции и систему защитного газа (Патент на изобретение Патент №2313143С1 от 20.12.2007,G21C, 9/00, 15/00).

Недостатком данного технического решения применительно к ядерным энергетическим установкам со свинцовым теплоносителем или его сплавами является отсутствие оптимизации потока теплоносителя на входе в главный циркуляционный насос, возможность образования вихрей, что может привести к отклонению режима работы насоса от режима нормальной эксплуатации, возможность поступления на всас главного циркуляционного насоса крупнодисперсных частиц оксидов теплоносителя в твёрдой фазе, что может привести к забиванию каналов гидростатического подшипника и преждевременному износу и разрушению элементов конструкции проточной части главного циркуляционного насоса. Такое техническое решение ухудшает показатели износостойкости главного циркуляционного насоса и снижает показатели безопасности установки в целом.

Задачи, решаемые изобретением – совершенствование конструкции ядерной энергетической установки, повышение ее безопасности и экономичности.

Технический результат – оптимизация потока тяжёлого жидкометаллического теплоносителя на входе в главный циркуляционный насос, механическая фильтрация теплоносителя, исключающая возможность попадания на всас главного циркуляционного насоса крупнодисперсных частиц, ускорение удаления водяных паров из газовой полости возле камеры подвода теплоносителя к главному циркуляционному насосу.

Технический результат достигается тем, что в ядерной энергетической установке, содержащей реактор с жидкометаллическим свинцовым теплоносителем или его сплавами, с размещенными под свободным уровнем теплоносителя активной зоной, парогенераторами, средствами циркуляции и системой защитного газа, камера подвода теплоносителя к главному циркуляционному насосу выполняется в виде конфузора с размещенным в нем вертикальным перфорированным кронштейном, а газовая полость камеры сообщается с конденсатором водяного пара в газовой системе

На фиг.1 представлена схема реакторной установки в разрезе по парогенератору и насосу; Под крышкой реактора 1 содержится жидкометаллический свинцовый теплоноситель или его сплавы, под свободным уровнем 2, выемная часть осевого насоса, погруженного в теплоноситель, состоит из перфорированного кронштейна 3, вала насоса 4, гидростатического подшипника, 5 рабочего колеса осевого типа 6, выправляющего аппарата 7, под свободным уровнем теплоносителя 2 находятся трубки горизонтального парогенератора 8, после омывания которых, теплоноситель попадает в камеру подвода выполненную в виде конфузора 9. Сквозь отверстия 10 в перфорированном кронштейне 3 теплоноситель попадает на всас рабочего колеса осевого типа 6. Над свободным уровнем теплоносителя 2 находится газовый оббьем контура 11 сообщенный с системой конденсаторов с помощью патрубка 12.

Работа ядерной энергетической установки осуществляется следующим образом. С помощью рабочего колеса осевого типа 6 организуется циркуляция теплоносителя по первому контуру реакторной установки. После омывания трубок горизонтального парогенератора 8, теплоноситель попадает в камеру подвода выполненную в виде конфузора 9. Сквозь отверстия 10 в перфорированном кронштейне 3 теплоноситель попадает на всас рабочего колеса осевого типа 6. Для эффективного вывода водяного пара из газового объема 11, газовый объем 11 сообщается с системой конденсаторов с помощью патрубка 12.

При образовании вихрей на входе в камеру подвода применение предлагаемого технического решение позволит оптимизировать поток теплоносителя перед его поступлением на всас главного циркуляционного насоса, что позволит использовать насос в рамках режимов нормальной эксплуатации, что способствует повышению общей эффективности работы насоса и продлению срока его эксплуатации. Сообщение газового объема контура с системой конденсаторов рядом с главным циркуляционным насосом позволяет удалить из газового объема водяной пар, исключая его попадание на всас главного циркуляционного насоса в составе двухкомпонентного потока. Применение предполагаемого технического решения позволяет повысить показатели надежности и долговечности работы энергетической установки.

Ядерная энергетическая установка, содержащая реактор с жидкометаллическим свинцовым теплоносителем или его сплавами, с размещенными под свободным уровнем теплоносителя активной зоной, парогенераторами, средствами циркуляции, например циркуляционными насосами, и систему защитного газа, отличающаяся тем, что камера подвода теплоносителя к главному циркуляционному насосу выполняется в виде конфузора с размещенным в нем вертикальным перфорированным кронштейном, а газовая полость камеры сообщается с конденсатором водяного пара в газовой системе.



 

Похожие патенты:

Изобретение относится к ядерному реактору с водой под давлением. Реактор (1) включает систему обеспечения безопасности, содержащую устройство обеспечения безопасности.

Изобретение относится к средству предотвращения расплавления корпуса ядерного реактора в условиях высокоинтенсивных тепловых воздействий от расплавленных материалов активной зоны при тяжелой аварии. В способе защиты ядерного реактора на верхней поверхности ванны расплава формируют развитую поверхность теплообмена, состоящую из части верхней поверхности ванны расплава и поверхностей теплопроводных элементов, расположенных на верхней поверхности расплава.

Изобретение относится к ядерному реактору с тяжелым жидкометаллическим теплоносителем. Во внутрикорпусном пространстве ядерного реактора, не занятом необходимым оборудованием, размещены с зазорами, обеспечивающими проток теплоносителя, контейнеры, заполненные материалом, отражающим или поглощающим нейтроны, с теплоемкостью большей, чем теплоемкость теплоносителя.

Изобретение относится к средствам обеспечения несущей способности железобетонных защитных оболочек атомных электростанций (ЗО АЭС). Формируют конечно-элементную модель защитной оболочки АЭС, определяют требуемую исходную несущую способность защитной оболочки АЭС с учетом данных о реальной трассировке армоканатов и усилиях в них от преднапряжения, полученных с датчиков системы мониторинга и домкратов, а также с учетом заданных физико-механических свойств конструктивов оболочки.

Изобретение относится к области атомной энергетики, в частности к системам, обеспечивающим безопасность атомных электростанций (АЭС), и может быть использовано при тяжелых авариях, приводящих к разрушению корпуса реактора АЭС, а также в металлургии и химической промышленности. Для снижения времени кристаллизации расплава в устройстве локализации расплава, в стенке корпуса установлены меридиональные ребра из материала с высокой теплопроводностью, проходящие через стенку корпуса и контактирующие со средой внутри корпуса, а снаружи погруженные в охлаждающую жидкость.

Заявлен ядерный реактор интегрального типа (варианты). Теплообменник размещен коаксиально с активной зоной в кольцевом пространстве, образованном между внутренней обечайкой, внутри которой размещены активная зона, входной и выходной коллекторы и защитная пробка, и разделительной обечайкой внутри корпуса реактора, формирующей опускной кольцевой канал и отделяющей нисходящий холодный поток от горячего восходящего потока теплоносителя.

Изобретение относится к области судостроения и касается силовых корпусных конструкций, в частности переборок защитного ограждения реакторного отсека атомной энергетической установки судна, и может быть использовано, например, для разработки защитного ограждения реакторного отсека ледокола или плавучей атомной электростанции.

Изобретение относится к ядерной энергетической установке. Установка (4) включает защитную оболочку (8) реактора и систему (2) фильтруемого сброса давления из защитной оболочки реактора.

Изобретение относится к ядерному реактору на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем. Реактор содержит активную зону, расположенную в полости центральной части корпуса ядерного реактора, и размещенные в полости периферийной части корпуса по меньшей мере один главный циркуляционный насос, один парогенератор и одна выгородка.

Изобретение относится к термоядерной технике, а именно к конструкции вакуумной камеры (ВК) и системы локализации аварии (СЛА) в термоядерном реакторе ТЯР или в демонстрационном термоядерном источнике нейтронов (ДЕМО-ТИН). Возможно ее использование в любых установках, где существует возможность образования водорода и гремучей смеси (ГС).

Изобретение относится к ядерной энергетической установке с тяжелым жидкометаллическим теплоносителем и может быть использовано в реакторных установках с жидкометаллическим охлаждением. Ядерная энергетическая установка с тяжелым жидкометаллическим теплоносителем с перфорированной решеткой распределения расхода на входе в парогенератор содержит реактор с жидкометаллическим свинцовым теплоносителем или его сплавами и систему защитного газа. Под свободным уровнем теплоносителя размещены активная зона, парогенераторы и средства циркуляции, например циркуляционные насосы. Причем на выходе теплоносителя из активной зоны установлена перфорированная решетка распределения расхода. Техническим результатом является возможность оптимизировать поток и распределить расход теплоносителя в трубной системе парогенератора ядерной энергетической установки с тяжелым жидкометаллическим теплоносителем, что улучшает эксплуатационные характеристики реакторной установки. 2 ил.
Наверх