Способ получения бутадиен-стирольного каучука

Изобретение относится к области производства бутадиен-стирольных каучуков путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперирования процесса, дегазации, введения антиоксиданта и выделения каучука из латекса методом коагуляции. В качестве коагулирующего агента используют катионные поверхностно-активные вещества. Технический результат - стабилизация процесса выделения каучука из латекса, снижение загрязнения окружающей среды продуктами от производства каучуков эмульсионной сополимеризации, уменьшение расхода коагулирующего агента, снижение стоимости получаемого каучука и создание замкнутого технологического цикла. 3 табл., 3 пр.

 

Изобретение относится к производству бутадиен-стирольных каучуков, получаемых эмульсионной (со)полимеризацией.

Известен способ получения бутадиен-стирольных каучуков с использованием в качестве коагулирующего агента поли-N,N-диметил-N,N-диаллил-аммоний хлорида (Никулин С.С., Вережников В.Н., Пояркова Т.Н., Вострикова Г.Ю. Влияние концентрации дисперсной фазы на закономерности выделения каучука из латекса. Журнал прикладной химии, т. 73, Вып. 10, 2000 г., С. 1720-1724), выпускаемого в промышленных масштабах под маркой ВПК-402. Расход данного коагулянта для выделения одной тонны каучука СКС-30 АРК составляет 3-5 кг.

Недостатками данного способа получения бутадиен-стирольного каучука является высокая стоимость ВПК-402, большой расход и самое главное повышенная чувствительность процесса к передозировке данного коагулирующего агента, что создает определенные трудности при работе с ним в реальных промышленных условиях. Кроме того, ВПК-402 обладает высокой антисептической активностью и попадание его на очистные сооружения может привести к дестабилизации их работы из-за гибели активного ила

Наиболее близким по технической сущности является способ получения бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, дегазации, введении антиоксиданта и выделении каучука из латекса методом коагуляции [Кирпичников П.А., Аверко-Антонович Л.А., Аверко-Антонович Ю.О. Химия и технология синтетического каучука: Учебник для вузов. - 3-е изд., перераб. - Л.: Химия, 1987. - 424 с., ил.] с использованием в качестве коагулирующего агента хлорида натрия, который и до настоящего времени применяют в некоторых технологических процессах.

Основными недостатками данного способа получения бутадиен-стирольных каучуков являются:

- высокий расход хлорида натрия на 1 тонну выделяемого каучука - до 200 кг;

- загрязнение окружающей среды коагулирующим агентом, хлоридом натрия, компонентами эмульсионной системы, мелкодисперсной крошкой каучука и др.;

- высокое потребление воды цехами, производящими эмульсионные каучуки;

- сложность в создании замкнутого технологического цикла в производстве эмульсионных каучуков.

Технической задачей, на решение которой направлено данное изобретение, является стабилизация процесса выделения каучука из латекса, снижение загрязнения окружающей среды продуктами от производства каучуков эмульсионной сополимеризации, уменьшение расхода коагулирующего агента, снижение стоимости получаемого каучука и создание замкнутого технологического цикла.

Поставленная задача достигается тем, что в способе получения бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, дегазации, введении антиоксиданта аминного или фенольного типа и выделении каучука из латекса методом коагуляции, новым является то, что в качестве коагулирующего агента используют катионные поверхностно-активные вещества.

Предлагаемый способ получения бутадиен-стирольного каучука позволяет стабилизировать процесс коагуляции, снизить загрязнение окружающей среды продуктами от производства каучуков эмульсионной сополимеризации, уменьшить себестоимость получаемого продукта, снизить водопотребление и создать замкнутый технологический цикл.

Способ осуществляется следующим образом.

Сополимеризацию бутадиена со стиролом осуществляют в батарее, состоящей из 10-12 полимеризационных аппаратов в присутствии инициаторов радикального типа (например, гидропероксида пинана). После достижения конверсии 65-70% в систему вводится стоппер радикального процесса (нитрит натрия, ронгалит и др.), и полученный латекс подается на дегазацию, где происходит отгонка незаполимеризовавшихся мономеров (стирол, бутадиен и других низкокипящих продуктов). Из отделения дегазации латекс поступает на коагуляцию. Перед коагуляцией в латекс вводится антиоксидант (противостаритель) в виде водной дисперсии и подвергают коагуляции, т.е. смешение с водным раствор хлорида натрия, катионными поверхностно-активными веществами (КПАВ) и серной кислоты. Образующаяся крошка каучука подается на промывку, обезвоживание, сушку и упаковку [Распопов И.В., Никулин С.С., Гаршин А.П. и др. Совершенствование оборудования и технологии выделения бутадиен-(α-метил)стирольных каучуков из латексов. М.: ЦНИИТЭнефтехим, 1997. 68 с.].

По предлагаемой технологии латекс бутадиен-стирольный латекс СКС-30 АРК смешивают в емкости для коагуляции при постоянном перемешивании и заданной температуре с КПАВ : додецилпиридиний хлорид (ДДПХ); децилпиридиний хлорид (ДПХ); цетилпиридиний бромид (ЦПБ); цетилтриметиламмоний бромид (ЦТМАБ) . После введения коагулирующих агентов и перемешивания в течение 1-2 минут и водили раствор подкисляющего агента (водный раствор серной кислоты с концентрацией 1-2%) и коагулируемую систему перемешивали 3-5 минут. рН коагуляции выдерживают 2,5-3,0. Образующуюся крошку каучука отделяют от серума, промывают водой и высушивают при температуре 80-85°С. Полноту коагуляции оценивали визуально (серум прозрачный, без включений - коагуляция полная), а также по массе образующейся крошки каучука.

Способ поясняется следующими примерами

Пример 1 (прототип)

Сополимеризация бутадиена со стиролом осуществляется по непрерывной схеме на батарее состоящей из 12 полимеризаторов. В первый по ходу процесса полимеризатор подается водная и углеводородная фазы (смесь 70% бутадиена и 30% стирола), радикальный инициатор (гидропероксиды изопропилбензола, пинана и др.) и регулятор молекулярной массы (третичный додецилмеркаптан). Дополнительные количества регулятора молекулярной массы вводятся в процесс перед пятым и девятым полимеризаторами. Полимеризаторы оборудованы мешалками. Сополимеризацию бутадиена со стиролом проводят при 4-8°С. Процесс ведут до конверсии 65-68%. При выходе из последнего полимеризатора латекс непрерывно заправляется стоппером - раствором диметилдитиокарбаматом натрия с нитритом натрия. Заправленный стоппером латекс проходит через фильтр и направляется на отгонку незаполимеризовавшихся мономеров в верхнюю часть колонны предварительной дегазации, где происходит отгонка основного количества бутадиена. После колонны предварительной дегазации латекс направляется в вакуумный отгонный аппарат, где происходит отгонка стирола и оставшегося бутадиена.

Латекс, из отделения дегазации, подают на коагуляцию. Перед коагуляцией в латекс вводится антиоксидант (противостаритель аминного или фенольного типа) в виде водной дисперсии и подвергают коагуляции. Для этого латекс выдерживают при заданной температуре 10-15 минут и при постоянном перемешивании вводят 20% водный раствор хлорида натрия. Для завершения процесса коагуляции вводят подкисляющий агент, в виде 1-2% водного раствора серной кислоты. Расход серной кислоты - 15,0 кг/т каучука. рН коагуляции 2,5-3,5. После коагуляции образующуюся крошку каучука отделяют от водной фазы (серума), промывают водой и высушивают при температуре 80-85°С.

Результаты испытаний представлены в таблице 1.

Пример 2

Отличительной особенностью при проведении исследований в примере 2 от примера 1 является то, что в качестве коагулирующих агентов использовали катионные поверхностно-активные вещества с концентрацией водных растворов 2,0%. Ввод КПАВ в латекс СКС=30 АРК осуществляли при постоянном перемешивании в течение 3-5 минут при установленной температуре. После чего в коагулируемую систему вводили для подкисления 2% водный раствор серной кислоты для поддержания значения рН на уровне 3,0. Образующуюся крошку отделяли от водной фазы, промывали водой и сушили при температуре 80-85°С в сушильном шкафу. Результаты представлены в табл. 2.

Из данных таблицы 2 можно сделать следующие выводы :

1. расход КПАВ в 100 раз меньше расхода хлорида натрия и до 1,5 раз ниже расхода катионного полиэлектролита (ВПК-402) (Никулин С.С., Вережников В.Н. Применение азотсодержащих соединений для выделения синтетических каучуков из латексов. Химическая промышленность сегодня. 2004, №4. С. 26-37), Такое аномальное поведение КПАВ на процесс выделения каучука из латекса гипотетически может быть объяснен тем, что КПАВ способны к мицелолобразованию в водных растворах. В данном случае процесс коагуляции базируется на взаимодействии латексных глобул, несущих на поверхности анионные ПАВ,

Примечание : расход серной кислоты - 15 кг/т каучука; кнп - коагуляция не полная; кп - коагуляция полная.

не с отдельными молекулами катионного электролита, а с мицеллами КПАВ, т.е. будет протекать своеобразная реакция поликонденсации с выделением низкомолекулярного продукта - неорганической соли (хлорида натрия) и образованием нестойкого комплекса латексная глобула-мицелла КПАВ;

- стоимость катионных поверхностно-активных веществ составляет 70-130 тыс. за тонну, а ВПК-402-300 тыс. за тонну.

- меньший расход коагулирующего агента приводит к снижению водопотребления цехами производящими эмульсионные каучуки;

- по всем основным показателям вулканизаты полученные на основе экспериментальных образцов соответствуют контрольному образцу, выделенному из латекса хлоридом натрия, а по устойчивости к старению немного превосходят его.

Пример 3

Для оценки свойств каучука СКС-30 АРК выделенного из латекса с использованием традиционного коагулянта (хлорида натрия) и КПАВ были приготовлены резиновые смеси и вулканизаты для оценки физико-механических показателей. Результаты испытаний представлены в табл. 3.

Анализ резиновых смесей и вулканизатов приготовленных на основе каучука СКС-30 АРК выделенного из латекса хлоридом натрия, мелассой и бинарным коагулянтом соответствуют требованиям ТУ. По устойчивости к старению вулканизаты на основе экспериментальных образцов каучука превосходят контрольные.

Способ получения бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперирования процесса, дегазации, введения антиоксиданта и выделения каучука из латекса методом коагуляции, отличающийся тем, что в качестве коагулирующего агента используют катионные поверхностно-активные вещества.



 

Похожие патенты:
Настоящее изобретение относится к способу получения бутадиен-стирольных каучуков эмульсионной (со)полимеризацией. Способ включает сополимеризацию бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперирование процесса, дегазацию, введение антиоксиданта и выделение каучука из латекса методом коагуляции.

Изобретение относится к новому содержащему алюминий нитрильному каучуку, способу его получения, вулканизируемых смесей на основе этого нитрильного каучука, к способу получения вулканизатов из этих смесей, а также к полученным самим вулканизатам. Цветоустойчивый, имеющий низкое содержание солей нитрильный каучук содержит повторяющиеся структурные единицы, по меньшей мере одного α,β-ненасыщенного нитрильного мономера и, по меньшей мере одного сопряженного диенового мономера и имеет алюминиевый показатель Е, соответствующей общей приведенной формуле (I), меньше или равный 35,0 частей на млн/МU в пересчете на нитрильный каучук.

Изобретение относится к непрерывному или полунепрерывному способу коагуляции при замораживании для водных дисперсии полимера на основе (мет)акрилата, при этом указанный способ включает стадию замораживания и стадию разделения на твердую и жидкую фазы и дополнительно характеризуется тем, что он включает дополнительную стадию примешивания воды и/или водяного пара между стадией замораживания и стадией разделения на твердую и жидкую фазы, где стадия разделения на твердую и жидкую фазы определяется коэффициентом разделения Р, кг/кг, в соответствии с формулой: где mH2O,мех., кг, представляет собой количество механически удаленной воды, т.е.

Изобретение относится к способу выделения каучуков эмульсионной полимеризации, стабилизированных эмульгаторами, содержащими сульфогруппы или мыла карбоновых кислот. Способ включает добавление в латекс синтетического коагулянта – аммонийной соли сополимера бутилметакрилата и итаконовой кислоты с содержанием итаконовой кислоты 20-40 мольных процентов.

Изобретение относится к выделению бутадиен-нитрильных каучуков из латексов, стабилизированных лейканолом и калиевыми мылами карбоновых кислот. .

Настоящее изобретение относится к стабилизации бромированных эластомеров с целью устранения их склонности к увеличению вязкости во времени. Описан способ улучшения стабильности вязкости по Муни бромированного эластомера.
Наверх