Способ разработки нефтяных низкопроницаемых залежей

Изобретение относится к способу разработки нефтяных низкопроницаемых залежей. Определяют направления начальных максимальных горизонтальных напряжений пласта. Производят бурение горизонтальных нагнетательных и добывающих скважин с рядным размещением параллельно через один и ориентацией стволов в направлении максимальных горизонтальных напряжений пласта. Осуществляют разобщение заколонных интервалов в добывающих скважинах. Проводят гидроразрыв пласта во всех нагнетательных скважинах. Запускают нагнетательные скважины в работу с закачкой жидкости при давлении, превышающем давления смыкания трещин гидроразрыва пласта. В добывающих горизонтальных скважинах разобщают заколонные интервалы цементированием хвостовиков. На основании расчета напряженно-деформированного состояния в области добывающих горизонтальных скважин оценивают необходимое время закачки от момента запуска нагнетательных горизонтальных скважин в закачку. После достижения условий изменения напряженно-деформированного состояния пласта в области добывающих горизонтальных скважин перфорируют их зацементированные хвостовики, выполняют гидроразрыв пласта с последующим запуском их в работу. Технический результат заключается в снижении темпов падения добычи нефти и повышении конечного коэффициента извлечения нефти. 4 ил.

 

Изобретение относится к нефтедобывающей промышленности и может быть применено для повышения эффективности разработки нефтяных низкопроницаемых залежей.

Известен способ разработки низкопроницаемых коллекторов, основанный на площадных пяти-, семи-, девятиточечных системах размещения добывающих и нагнетательных скважин (Фазлыев Р.Т. Площадное заводнение нефтяных месторождений. - М.: Недра, 1979, с. 7, 47-49).

Недостатком данного технического решения является использование вертикальных скважин, применение которых на низкопроницаемых коллекторах нерентабельно из-за низких дебитов добывающих скважин и низкого коэффициента извлечения нефти.

Известен способ разработки залежи с низкопроницаемыми коллекторами, включающий бурение добывающих и нагнетательных скважин, закачку воды в пласт, вытеснение нефти к добывающим скважинам и проведение гидравлического разрыва пласта, добывающие и нагнетательные скважины бурят с горизонтальными стволами, параллельными друг другу в плане с пересечением всех низкопроницаемых пластов от кровли до подошвы залежи, при этом в своде структуры бурят вертикальные скважины вдоль выявленной или предполагаемой трассировки естественной трещиноватости с расположением забоев этих скважин на продолжении экстраполяционных прямых по отношению к горизонтальным стволам нагнетательных скважин, после чего в данных скважинах осуществляют гидравлический разрыв пласта, а закачку воды производят в вертикальные скважины, в которых осуществлен гидроразрыв пласта, и в горизонтальные нагнетательные скважины, при этом закачку воды осуществляют с химическими реагентами, предотвращающими разбухание глинистых частиц и пропластков, и реагентами для выравнивания профиля приемистости, причем последние вводят в закачиваемую воду после обводнения добываемой продукции на 50-80% (патент №2208140, Е21В 43/20, оп. 10.07.2003).

Недостатком способа является невысокая нефтеотдача и темпы отбора при разработке низкопроницаемых коллекторов с проницаемостью менее 2 мД. Также дебиты вертикальных скважин на низкопроницаемых коллекторах характеризуются очень низкими значениями.

Известен способ разработки залежи, включающий бурение добывающих и нагнетательных скважин по рядной системе разработки с проведением гидроразрыва пласта (ГРП) на всех скважинах, в котором размещают ряды нагнетательных и добывающих скважин параллельно и с чередованием через один в направлении максимальных горизонтальных напряжений пласта, при этом добывающие и нагнетательные скважины бурят с горизонтальными стволами в направлении максимальных горизонтальных напряжений с проведением на них многостадийного гидравлического разрыва пласта (патент №2547848, Е21В 43/263, 43/30, оп. 10.04.2015).

Основным недостатком данного способа является то, что при фиксированной длине горизонтального ствола скважины ввиду продольного расположения к стволу трещин ГРП, существует ограничение длиной трещины ГРП в зависимости от особенностей профиля механических свойств и количеством стадий, и поэтому не достигается максимальная продуктивность.

Известен способ разработки нефтяной залежи в разбуренных зонах за счет уплотняющего бурения, разработку нефтяных залежей ведут системой вертикальных нагнетательных и добывающих скважин с нагнетательной скважиной с ГРП в центре и добывающими с ГРП вокруг, на добывающих и на нагнетательных скважинах сразу же после бурения проводят ГРП и пускают скважины в работу, в разбуренных зонах уплотняют сетку скважин размещением стволов добывающих горизонтальных скважин в направлении первоначальных максимальных горизонтальных напряжений залежи, многостадийный ГРП (МГРП) в горизонтальных скважинах для задания направления трещин гидравлического разрыва перпендикулярно направлению горизонтальных стволов проводят на этапе, когда соседние вертикальные скважины существующей системы разработки, размещенные напротив середины длины горизонтального ствола добывающих скважин, уже пущены в нагнетание (патент №2624944, Е21В 43/30, 43/26, оп. 11.07.2017).

Основной недостаток данного способа заключается в том, что при бурении уплотняющихся горизонтальных скважин с многостадийными трещинами ГРП имеются высокие риски прорыва воды от трещин авто-ГРП нагнетательных скважин существующей площадной системы разработки, длину и рост которых сложно контролировать.

Наиболее близким по технической сущности является способ разработки залежи, включающий бурение горизонтальных добывающих скважин с рядным размещением скважин и ориентацией горизонтальных стволов в направлении минимальных горизонтальных напряжений пласта, выполнение многостадийного ГРП, параллельно рядам добывающих горизонтальных скважин, с чередованием через один ряд, бурят ряды нагнетательных вертикальных скважин с выполнением на всех скважинах ГРП, при этом на нагнетательных скважинах, размещенных напротив середины длины горизонтального ствола добывающих скважин, ГРП и запуск в работу осуществляют на этапе, когда все соседние скважины уже пущены в работу, развитие трещин ГРП и авто-ГРП в данных скважинах будет происходить в направлении перпендикулярно начальным направлениям максимальных горизонтальных напряжений пласта (патент №2515628, Е21В 43/18, 43/30, оп. 20.05.2014).

Основной недостаток данного способа заключается в том, что возникает риск прорыва трещины авто-ГРП нагнетательной скважины, размещенной напротив середины длины горизонтального ствола добывающих скважин, в добывающие горизонтальные скважины с многостадийными трещинами ГРП.

Задачей изобретения является создание способа разработки нефтяных низкопроницаемых залежей, в котором устранены недостатки аналогов и прототипа.

Техническим результатом является снижение темпов падения добычи нефти и повышение конечного коэффициента извлечения нефти.

Технический результат достигается тем, что в способе разработки нефтяных низкопроницаемых залежей, включающем определение направления начальных максимальных горизонтальных напряжений пласта, бурение горизонтальных нагнетательных и добывающих скважин с рядным размещением параллельно через один и ориентацией стволов в направлении максимальных горизонтальных напряжений пласта, разобщение заколонных интервалов в добывающих скважинах, проведение гидроразрыва пласта во всех нагнетательных скважинах и запуск нагнетательных скважин в работу с закачкой жидкости при давлении, превышающем давления смыкания трещин гидроразрыва пласта, согласно настоящему изобретению, на добывающих горизонтальных скважинах разобщают заколонные интервалы цементированием хвостовиков, при этом оценивают необходимое время закачки от момента запуска нагнетательных горизонтальных скважин в закачку на основании расчета напряженно-деформированного состояния в области добывающих горизонтальных скважин, а после достижения условий изменения напряженно-деформированного состояния пласта в области добывающих горизонтальных скважин перфорируют их зацементированные хвостовики, выполняют ГРП с последующим запуском их в работу.

Осуществление предлагаемого способа иллюстрируется следующими материалами.

Фиг. 1 - схема размещения скважин согласно изобретению, где 1 - ряды горизонтальных добывающих скважин, трещины ГРП которых направленны перпендикулярно направлению горизонтального ствола скважины; 2 - ряды нагнетательных скважин, трещины ГРП которых направленны в направлении максимальных горизонтальных напряжений пласта σmax; σmin - направление минимального горизонтального напряжения пласта; σmax - направление максимального горизонтального напряжения пласта.

Фиг. 2 - схема размещения скважин по прототипу, где 1 - ряды горизонтальных добывающих скважин, трещины ГРП которых направленны в направлении максимальных горизонтальных напряжений пласта σmax; 2 -нагнетательные вертикальных скважины (ВС), расположенные в углах схемы разработки; 3 - нагнетательные ВС, расположенные напротив середин горизонтальных добывающих скважин.

Фиг. 3 - динамика изменения накопленной добычи нефти на единицу площади элемента разработки, где вариант 1 - вариант систем разработки по прототипу, вариант 2 - вариант системы разработки согласно изобретению.

Фиг. 4 - динамика изменения коэффициента извлечения нефти, где вариант 1 - вариант систем разработки по прототипу, вариант 2 - вариант системы разработки согласно изобретению.

Способ осуществляется следующим образом.

Определяют начальные региональные направления минимальных и максимальных горизонтальных напряжений пласта следующими способами: по результатам проведения кросс-дипольного широкополосного акустического каротажа после ГРП, по направлению искусственной трещиноватости, определяемой электрическим микроимиджером (Латыпов И.Д., Борисов Г.А., Хайдар A.M., Горин А.Н., Никитин А.Н., Кардымон Д.В. Переориентация азимута трещины повторного гидроразрыва пласта на месторождениях ООО «РН-Юганскнефтегаз» // Нефтяное хозяйство. - 2011. - №6. - с. 34-38), по результатам наблюдения за развитием трещин ГРП при ранее проведенных работах с применением микросейсмического мониторинга или мониторинга микродеформации (J. Н. Le Calvez, R. С.Klem, L. Bennett, A. Erwemi, M. Craven, J. C. Palacio "Real-Time Microseismic Monitoring of Hydraulic Fracture treatment: A Tool To Improve Completion and Reservoir Management". SPE Hydraulic Fracturing Technology Conference, College Station, Texas. Extended abstract, SPE 106159. - 2007).

На месторождении бурят ряды горизонтальных скважин в направлении начальных максимальных горизонтальных напряжений пласта (фиг. 1). Размещают ряды добывающих 1 и нагнетательных 2 скважин параллельно с чередованием через один в направлении начальных максимальных горизонтальных напряжений пласта.

На добывающих скважинах цементируют хвостовики для разобщения заколонных интервалов.

Производят ГРП во всех нагнетательных горизонтальных скважинах. Трещины ГРП нагнетательных скважин направлены вдоль горизонтального ствола, т.е. вдоль линии начального максимального горизонтального напряжения пласта.

После отработки нагнетательных скважин на нефть либо сразу же после выполнения ГРП для изменения напряженно-деформированного состояния в области добывающих горизонтальных скважин проводят закачку жидкости в нагнетательные скважины при давлении, превышающем давление смыкания трещины ГРП, для образования трещин авто-ГРП. Трещины авто-ГРП - это самопроизвольно развитые трещины, образующиеся в результате закачки жидкости на нагнетательных скважинах при забойных давлениях выше давления разрыва пласта (Мальцев В. В., Асмандияров Р. Н., Байков В. А., Усманов Т. С, Давлетбаев А. Я. Исследование развития трещин автоГРП на опытном участке Приобского месторождения с линейной системой разработки // Нефтяное хозяйство. -2012. - №5. - С. 70-73). Давление гидроразрыва пласта определяют в ходе выполнения операции ГРП либо при проведении гидродинамических исследований на скважинах.

Оценку необходимого времени закачки от момента запуска нагнетательных горизонтальных скважин в закачку проводят на основании расчета напряженно-деформированного состояния в области добывающих горизонтальных скважин в гидродинамическом и геомеханическом симуляторах.

По достижению условий изменения напряженно-деформированного состояния в области добывающих горизонтальных скважин, зацементированный хвостовик ствола добывающей скважины перфорируют с последующим проведением МГРП, что приводит к образованию поперечно-направленных трещин ГРП (вдоль линии начального минимального горизонтального напряжения пласта). Количество трещин ГРП зависит от длины горизонтального участка ствола скважины, геологических особенностей объекта (в том числе от особенностей профиля механических свойств по разрезу) и влияния локального изменения напряженно-деформированного состояния в области скважины на траектории поперечно-направленных трещин ГРП (их возможного пересечения). После проведения МГРП горизонтальные скважины запускают в работу.

Пример конкретного осуществления способа.

В качестве объекта разработки рассматривается залежь нефти с низкопроницаемым коллектором, характеризующуюся следующими геолого-геофизическими параметрами: глубина залегания - 2600 м, эффективная нефтенасыщенная толщина - 15 м, коэффициент проницаемости - 0,001 мкм2, коэффициент пористости - 0,17, коэффициент нефтенасыщенности - 0,7, начальное пластовое давление - 26 МПа, вязкость нефти в пластовых условиях - 1,5 сП, плотность нефти в пластовых условиях - 870 кг/м3, давление насыщения газом - 11,6 МПа, газовый фактор - 70 м3/т.

Для этой залежи нефти определяют начальное направление максимальных горизонтальных напряжений пласта - 158°. Зная направления этих напряжений, бурение сетки скважин в краевых зонах проводят по схеме, представленной на фигуре 1. Ряды горизонтальных добывающих 1 и нагнетательных 2 скважин с длиной ствола 1000 м бурят в направлении начальных максимальных горизонтальных напряжений с расстоянием между горизонтальными скважинами в ряду 300 м.

На нагнетательных скважинах 2 выполняют МГРП с полудлинами трещин 100 м. Нагнетательные скважины 2 переводят на временную добычу нефти (отработка на нефть) либо без отработки на нефть.

Далее проводят закачку жидкости в нагнетательные скважины 2 при давлении выше давления смыкания трещин ГРП (450 атм) для изменения направления начального максимального горизонтального напряжения в области добывающих горизонтальных скважин 1. Рост трещин авто-ГРП на нагнетательных скважинах происходит в направлении начальных максимальных горизонтальных напряжений пласта.

Оценку необходимого времени закачки от момента запуска нагнетательных горизонтальных скважин в закачку проводят на основании расчета напряженно-деформированного состояния в области добывающих горизонтальных скважин 1 в гидродинамическом и геомеханическом симуляторах. По достижению изменения направления начального максимального горизонтального напряжения в области горизонтального ствола добывающей скважины, перфорируют зацементированный хвостовик добывающей скважины 1 и проводят МГРП, что приводит к образованию поперечных трещин ГРП на добывающих горизонтальных скважинах 1.

Для участка рассматриваемой залежи создают гидродинамическую модель и рассчитывают для сравнения 2 варианта системы разработки: по прототипу и согласно предлагаемому изобретению. Забойное давление на добывающих горизонтальных скважинах - 8 МПа, забойное давление на нагнетательных скважинах - 45 МПа.

1. Вариант 1 по прототипу (фиг. 2). В системе разработки размещены 28 нагнетательных ВС с трещинами авто-ГРП с полудлиной 300 м в 4 ряда по 7 скважин в ряду с чередованием с рядами горизонтальных скважин по 3 скважины в ряду. Длина горизонтального участка ствола 1000 м с семью поперечно-направленными трещинами ГРП с полудлиной 100 м.

Расстояние между рядами скважин - 300 м, между горизонтальными скважинами в рядах - 300 м, между нагнетательными скважинами в рядах -700 м, ссоотношение добывающих и нагнетательных скважин 1:3. ГРП и пуск в работу осуществляют на горизонтальных добывающих 1 и нагнетательных ВС 2, расположенных в углах схемы разработки. Развитие трещин ГРП и авто-ГРП на этих скважинах будет происходить в направлении начальных максимальных горизонтальных напряжений пласта. ГРП и пуск в работу нагнетательных ВС 3, расположенных напротив середин горизонтальных добывающих скважин, осуществляют после того, как остальные скважины пущены в работу, при этом развитие трещин авто-ГРП на этих скважинах будет происходить в направлении двух соседних запущенных ранее нагнетательных ВС в том же ряду - параллельно начальным направлениям минимальных горизонтальных напряжений пласта.

2. Вариант 2, согласно изобретению. На фиг. 1 представлена схема размещения скважин согласно изобретению. Размещено девять горизонтальных добывающих скважин 1 с длиной горизонтального участка ствола 1000 м с семью поперечно-направленными трещинами ГРП с полудлиной 100 м. И двенадцать горизонтальных нагнетательных скважин 2 с продольно-направленными трещинами ГРП. Расстояние между рядами горизонтальных скважин - 300 м, между скважинами в рядах - 300 м, плотность сетки скважин - 21 Га/скв, соотношение добывающих и нагнетательных скважин 1:1.

На фиг. 3 и 4 представлены результаты расчета двух вариантов. На фиг. 3 представлена динамика изменения накопленной добычи нефти на единицу площади элемента, что свидетельствует о снижении темпов падения добычи нефти. На фиг. 4 представлена динамика изменения коэффициента извлечения нефти в течение 10 лет. Из фиг. 3 видно, что срок эффективной работы добывающих скважин по Варианту 2 превышает срок эффективной работы добывающих скважин по Варианту 1. За 10 лет добычи коэффициент извлечения нефти достиг значения 0,355 по Варианту 2 по сравнению с 0,217 по Варианту 1.

Таким образом, предложенная система разработки позволит повысить коэффициент извлечения нефти, понизить темпы падения добычи нефти, а также уменьшить риски прорыва трещин авто-ГРП нагнетательных скважин.

Способ разработки нефтяных низкопроницаемых залежей, включающий определение направления начальных максимальных горизонтальных напряжений пласта, бурение горизонтальных нагнетательных и добывающих скважин с рядным размещением параллельно через один и ориентацией стволов в направлении максимальных горизонтальных напряжений пласта, разобщение заколонных интервалов в добывающих скважинах, проведение гидроразрыва пласта во всех нагнетательных скважинах и запуск нагнетательных скважин в работу с закачкой жидкости при давлении, превышающем давления смыкания трещин гидроразрыва пласта, отличающийся тем, что на добывающих горизонтальных скважинах разобщают заколонные интервалы цементированием хвостовиков, при этом оценивают необходимое время закачки от момента запуска нагнетательных горизонтальных скважин в закачку на основании расчета напряженно-деформированного состояния в области добывающих горизонтальных скважин, а после достижения условий изменения напряженно-деформированного состояния пласта в области добывающих горизонтальных скважин перфорируют их зацементированные хвостовики, выполняют гидроразрыв пласта с последующим запуском их в работу.



 

Похожие патенты:

Группа изобретений относится к бурению нефтегазодобывающих скважин, в частности многоствольных скважин. Узел дефлектора содержит корпус дефлектора, имеющий размещенное в нем окно дефлектора, наклонную направляющую дефлектора, расположенную по меньшей мере частично через окно дефлектора и приводной элемент, расположенный внутри корпуса дефлектора и содержащий внутреннюю муфту, выполненную с возможностью вхождения в зацепление с наклонной направляющей дефлектора на ее находящемся ниже по стволу скважины конце, причем внутренняя муфта выполнена с возможностью перемещения наклонной направляющей дефлектора между первым (1), вторым (2) и третьим (3) различными положениями, когда скважинный инструмент перемещается назад и вперед внутри корпуса дефлектора.

Заявлен способ гидроразрыва подземного пласта и способ снижения связанных с трением потерь в текучей среде для обработки скважины. Способы могут использоваться для различных видов обработки подземных пластов.

Заявлен способ гидроразрыва подземного пласта и способ снижения связанных с трением потерь в текучей среде для обработки скважины. Способы могут использоваться для различных видов обработки подземных пластов.

Изобретение относится к горному делу и может быть использовано при отработке месторождений полезных ископаемых геотехнологическими методами. Технический результат, достигаемый в результате использования изобретения, - расширение технологических возможностей за счет обеспечения селективной обработки жидкостью с заданными свойствами и параметрами различных участков массива горных пород.

Изобретение относится к области транспортных средств, используемых в нефтяной и газовой отрасли, предназначено для усиленной добычи углеводородов, в частности для приготовления рабочей жидкости и подачи её под давлением для гидроразрыва буровой скважины. Установка включает два блока манифольдов, расположенных, соответственно с правого и левого бортов грузового шасси.

Изобретение относится к области транспортных средств, используемых в нефтяной и газовой отрасли, предназначено для усиленной добычи углеводородов, в частности для приготовления рабочей жидкости и подачи её под давлением для гидроразрыва буровой скважины. Установка включает два блока манифольдов, расположенных, соответственно с правого и левого бортов грузового шасси.

Изобретение относится к нефтегазовому оборудованию, в частности к оборудованию заканчивания скважин, и может быть использовано в составе комбинированной эксплуатационной колонны при операциях многостадийного гидроразрыва пласта (МГРП). Комплект оборудования для МГРП горизонтальной скважины спуском одной обсадной комбинированной колонной включает: башмак колонный самовращающийся для оснащения низа обсадной колонны с целью ориентации ее при спуске в скважину; муфту поплавковую с обратным клапаном, имеющим пружину из цветного металла и эластомерное уплотнение, для оснащения низа обсадной колонны; клапан циркуляционный для гидроразрыва пласта; по меньшей мере одну муфту гидравлическую для гидроразрыва пласта, в корпусе которой имеются циркуляционные окна и размещена шторка, зафиксированная срезными винтами; по меньшей мере, одну муфту шариковую управляемую для гидроразрыва пласта, в корпусе которой размещена шторка, зафиксированная срезными винтами, при этом в корпусе и шторке имеются циркуляционные окна; по меньшей мере, один пакер для гидроразрыва пласта; полированную воронку для посадки плавающего устройства герметизации хвостовика, оснащенную муфтовой резьбой, соединенную с нижним переводником, оснащенным ниппельной резьбой; стоп-патрубок для манжетного цементирования; пакер для манжетного цементирования, в корпусе которого установлены обоймы, между которыми установлена манжета; муфту цементировочную для гидроразрыва пласта, в корпусе которой размещены открывающая втулка и закрывающая втулка; устройство для герметизации хвостовика плавающее, состоящее из направляющего башмака, соединенного с корпусом, на котором установлены три секции манжетных блоков из четырех шевронных пакетов.

Группа изобретений относится к добычи нефти и газа. Технический результат - улучшение показателя вязкости закачиваемого флюида, обеспечение суспендирования в нем частиц, в том числе и при условии высокого усилия сдвига, экологическая безопасность.
Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных скважин. Способ включает закачивание в полость скважины жидкости, формирование периодических импульсов давления в призабойной зоне в виде перемещающейся по полости скважины волны, образующейся при периодическом повышении давления в скважине, с применением вентилей.

Группа изобретений относится к автоматизированному разрыву пласта с автоматическим управлением скоростью нагнетания насоса. Технический результат – поддержание давления обработки в безопасном диапазоне, равномерная стимуляция в нескольких перфорациях, минимизация времени простоя скважины во время разрыва пласта и между стадиями.
Наверх