Способ получения углеграфитовых изделий

Изобретение может быть использовано для изготовления электродов, тиглей, нагревателей, материалов для атомной техники, например уран-графитовых тепловыделяющих элементов. Заготовки помещают в контейнер из графлекса или графита, используя в качестве засыпки карбамид в количестве 5-10 мас. % заготовок. Контейнер с заготовками накрывают крышкой, обеспечивая ограниченный доступ воздуха, и помещают в замкнутую ёмкость, которую заполняют углеродной засыпкой - нефтяным гранулированным коксом, также добавляя в него карбамид в количестве 5-10 мас. % засыпки. Обжиг заготовок проводят при нагревании до 750-800°С. Упрощается процесс обжига, повышается качество углеграфитовых изделий, особенно малогабаритных, за счет исключения их окисления и прикоксовывания засыпки. 3 з.п. ф-лы, 1 табл.

 

И зобретение относится к производству углеродных изделий, а именно к технологии их обработки при обжиге, и может быть использовано в различных отраслях техники для изготовления электродов, тиглей, нагревателей, а также материалов для атомной техники, например, уран-графитовых тепловыделяющих элементов.

Процесс производства углеграфитовой продукции состоит из нескольких технологических операций, среди которых обжиг занимает особое место при изготовлении углеграфитовых изделий. Главным процессом при обжиге «зеленых» заготовок является формирование цементирующей коксовой решетки из связующего. При этом происходит термическая деструкция связующего, образование из него полукокса и последующее превращение его в кокс. Обжиг определяет качество и эксплуатационные свойства углеграфитовой продукции. Качество получаемых углеграфитовых изделий в значительной мере зависит от их степени окисления при проведении обжига.

Известно, что в окислительных средах углеграфиты стойки при относительно низких температурах (до 400°С), но при высоких температурах они вступают в реакции сравнительно легко. В зависимости от среды температура начала заметного взаимодействия с графитом может существенно меняться. Так, например, реакция с кислородом воздуха начинается при 400°С, а с углекислым газом - при температуре 500°С (Левашова А.И., Кравцов А.В. Химическая технология углеродных материалов: Учебное пособие. - Томск: Изд-во ТПУ, 2008. - стр. 14). Кроме того, при обжиге окисленная и не окисленная части углеграфитовых заготовок претерпевают различную по величине усадку, что неизбежно ведет к образованию трещин и разрушению. Поэтому температурный интервал обжига 400-600°С требует наиболее ответственного подхода к выбору газообразной среды.

Для качественного проведения процесса обжига применяют косвенный обогрева изделий через стенку. Однако в подавляющем большинстве случаев этого недостаточно. Эта проблема решается тем, что углеграфитовые заготовки помещают в упаковочный материал (засыпку), который частично предохраняет изделие от окисления и деформации, более равномерно распределяет температурное поле в объеме камеры нагрева, уменьшая тем самым градиент температуры, влияет на состав и давление газовой атмосферы в печи (Левашова А.И., Кравцов А.В. «Химическая технология углеродных материалов» Учебное пособие. Томск, изд-во ТПУ, 2008, стр. 72). В качестве засыпки используют измельченный металлургический кокс или смесь антрацита и речного песка.

Известен способ получения углеграфитовых изделий, заключающийся в том, что их термообработку осуществляют при периодическом снижении температуры обжига изделий в областях фазовых переходов связующего (RU 2230380, МПК G21C 21/02 (2000.01), опубл. 10.06.2004). Такой обжиг требует проведения термообработки в инертной или восстановительной атмосфере, что усложняет аппаратурное оформление процесса.

Известен способ получения углеграфитовых изделий, по которому обжиг изделий осуществляют в контейнере под давлением выделяющихся летучих газов (SU 865789, МПК С01В 31/04 (2000.01), опубл. 23.09.1981). Недостаток этого способа заключается в том, что при запрессовке заготовки в контейнер и последующей термообработке давление выделяющихся летучих газов достигает нескольких десятков атмосфер. Кроме того, требуется изготовление специального индивидуального контейнера, что делает проблематичным применение способа при массовом выпуске изделий.

Наиболее близким по технической сущности и решаемой задаче является способ получения углеграфитовых изделий, включающий размещение углеграфитовых заготовок в контейнере с углеродной засыпкой между заготовками и стенками контейнера и последующий обжиг заготовок и графитацию в герметично закрытом контейнере под давлением выделяющихся летучих (GB 759160, МПК С04В 35/532, опубл. 17.10.1956). Этот способ достаточно эффективен при получении крупногабаритных изделий, когда количество воздуха, содержащегося в засыпке, недостаточно для заметного окисления поверхности обжигаемой заготовки. Однако такой обжиг малогабаритных заготовок в присутствии засыпки приводит к их частичному окислению и прикоксовыванию засыпки к поверхности получаемых изделий. Помимо этого, проведение обжига в герметичном контейнере при высокой температуре и высоком давлении (десятки атмосфер) усложняет аппаратурное оформление процесса.

Задача изобретения и достигаемый при использовании изобретения технический результат - упрощение процесса обжига и повышение качества углеграфитовых изделий, особенно малогабаритных, за счет исключения их окисления и прикоксовывания засыпки.

Поставленная задача решается тем, что в способе получения углеграфитовых изделий, включающем размещение заготовок в контейнере с засыпкой и их обжиг в воздушной атмосфере, согласно изобретению, в качестве засыпки контейнера используют карбамид, который загружают в количестве 5-10 мас. % заготовок, контейнер размещают в замкнутой емкости с ограниченным доступом воздуха, которую заполняют углеродной засыпкой также содержащей карбамид в количестве 5-10 мас. % засыпки.

В частных случаях осуществления изобретения:

- в качестве материала контейнера для заготовок используют графлекс или графит;

- в качестве углеродной засыпки применяют нефтяной гранулированный кокс.

- обжиг заготовок проводят при нагревании до температуры 750-800°С.

Карбамид (NH2)2CO) добавляют в углеродную засыпку и контейнер с обжигаемыми образцами для обеспечения (создания) защитной атмосферы при отжиге. При нагревании до 150°С и выше карбамид разлагается с образованием аммиака и углекислого газа. Углекислый газ, в свою очередь, при температуре ≥500°С взаимодействует с углеродом с образованием оксида углерода по реакции:

С+CO2=2СО

Образующиеся оксид углерода и аммиак выполняют роль защитной атмосферы, препятствующей окислению обжигаемых образцов.

Предлагаемый способ обжига углеграфитовых изделий был опробован на «зеленых» заготовках, полученных прессованием смеси порошка графита с фенолформальдегидной смолой.

Осуществление способа.

Заготовки размером ~12,8×55 мм (d×l) из смеси порошка графита Mill - 6 (5-100 мкм) и искусственного графита с размером частиц ≤100 мкм и связующего - фенолформальдегидной смолы марки СФП 011А в количестве 18 мас. %. прессовали при температуре 70-130°С и давлении 8-10 МПа.

В соответствии с заявленным техническим решением спрессованные «зеленые» заготовки помещали в цилиндрические контейнеры из графита ГМЗ или графлекса, которые содержали засыпку из карбамида в количестве 5-10 мас. % загружаемых заготовок.

Контейнеры с заготовками и карбамидом помещали в емкость из жаропрочной стали с ограниченным доступом воздуха, который обеспечивался при помощи крышки, покрывали коксовой засыпкой, также содержащей карбамид в количестве 5-10 мас. % засыпки. Обжиг проводили в стандартном прокалочном муфеле типа СНОЛ 6/10 при скорости нагрева 30-50°С/час до температуры 750°С. Контрольный образец №1 (см. таблицу) обжигали без добавления карбамида. Результаты обжига образцов углеграфитовых изделий приведены в таблице.

Результаты по обжигу, приведенные в таблице, показывают убыль массы образцов в пределах 6,9-11,2%. Эта убыль массы образцов обусловлена в большей мере пиролизом связующего - фенолформальдегидной смолы СФП 011А и, в меньшей мере, частичным окислением углерода. Так как убыль массы, обусловленная термопиролизом связующего, для всех образцов приблизительно одинакова, то о степени окисления образцов можно судить по суммарной убыли массы (потеря массы за счет термопиролиза связующего плюс потеря за счет окисления углерода) обжигаемых образцов.

Как видно из представленных данных, наименьшая убыль массы была отмечена для образцов №3-5, прошедших обжиг с добавлением 5-10 мас. % карбамида в углеродную засыпку и контейнеры с отжигаемыми образцами. Эти образцы после обжига имели гладкую блестящую поверхность без видимых следов окисления.

Как показывают экспериментальные, данные выход за верхнюю границу заявленного диапазона содержания карбамида в засыпке не приводит к заметному изменению убыли массы изделий (образцов), а при выходе за нижнюю границу заявленного диапазона наблюдается увеличение потери массы образцов и, соответственно, заметное окисление поверхности отожженных образцов.

Предложенный способ позволяет существенно упростить получение углеграфитовых изделий, так как позволяет проводить термообработку в обычных прокалочных муфельных печах без использования инертных и восстановительных газов и сложной агрегированной системы герметизации контейнера с обжигаемыми образцами, а также повысить качество изделий за счет исключения окисления поверхности и прикоксовывания засыпки к их поверхности.

Предложенный способ получения углеграфитовых изделий может применяться как при обжиге «зеленых» заготовок, полученных методом порошковой металлургии, так и методом пропитки графита и других пористых керамических материалов растворами солей различных металлов. Предложенный способ особенно эффективен при получении малогабаритных изделий, для которых предъявляются жесткие требования к возможности окисления, отсутствию трещин и состоянию поверхности изделий.

1. Способ получения углеграфитовых изделий, включающий помещение заготовок в контейнер, размещение контейнера в замкнутой емкости с ограниченным доступом воздуха и обжиг заготовок в присутствии углеродной засыпки, отличающийся тем, что заготовки в контейнере размещают в засыпке из карбамида, который загружают в количестве 5-10 мас. % заготовок, а углеродной засыпкой, в которую также добавляют карбамид в количестве 5-10 мас. % засыпки, заполняют замкнутую емкость.

2. Способ по п. 1, отличающийся тем, что в качестве материала контейнера для заготовок используют графлекс или графит.

3. Способ по п. 1, отличающийся тем, что в качестве углеродной засыпки применяют нефтяной гранулированный кокс.

4. Способ по п. 1, отличающийся тем, что обжиг заготовок проводят при нагревании до температуры 750-800°С.



 

Похожие патенты:

Изобретение относится к области создания углерод-карбидных конструкционных и теплозащитных материалов, работающих в условиях высоких температур и окислительных сред, а также к области создания и производства углеродных материалов на основе углеродных тканей и может быть использовано в химической, нефтяной и металлургической промышленности, а также в авиакосмической технике и энергетике для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред.

Изобретение относится к огнеупорной промышленности и может быть использовано для получения прессованных изделий и набивных углеродсодержащих обжиговых и безобжиговых огнеупоров, используемых в металлургических агрегатах в качестве футеровочного материала и стойких к термическим ударам, воздействию высоких температур, эрозии в агрессивных окислительных средах.

Изобретение относится к формованному материалу для производства углеродных кластеров с использованием биомассы в качестве основного сырьевого материала. Способ производства материала для производства углеродных кластеров включает получение исходного материала, содержащего кальцинированную растительную биомассу и связующее; формование, предпочтительно в виде стержня, необязательный дополнительный обжиг и графитизацию исходного материала при температуре, равной 2500°С или выше.

Изобретение относится к получению детали из композитного материала, которая может быть частью горячей секции газовой турбины авиационного или аэрокосмического двигателя, или промышленной турбины, или частью турбинного двигателя. Способ включает по меньшей мере следующие этапы.

Изобретение относится к способу изготовления керамического изделия, полученного из керамической структуры, созданной по технологии 3D печати, которое может применяться в качестве керамического фильтра для фильтрации расплавленного металла. Способ включает карбонизацию керамической структуры, созданной по технологии 3D печати, которая включает пропитку и/или покрытие керамической структуры, созданной по технологии 3D печати, прекурсором углерода или печати керамической структуры по технологии 3D печати с использованием керамической печатной среды, содержащей прекурсор углерода.
Изобретение относится к области машиностроения и может быть использовано в торцовых уплотнениях узлов трения авиационной и наземной техники, где требуется работоспособность материалов в условиях вакуума, избыточных давлений, сухого трения, повышенной влажности и отрицательных температур. Технический результат заявленного изобретения заключается в достижении более высоких значений герметичности и снижении газопроницаемости самосмазывающегося материала.
Изобретение относится к области машиностроения и получению углеродных-углеродных композиционных материалов (УУКМ), которые могут быть использованы для комплектации тяжело нагруженных узлов трения в условиях высокого энергетического нагружения и окислительной среды. Способ получения углерод-углеродного композиционного материала включает обжиг исходных сформованных заготовок на основе углеродных волокон и пековых связующих, последующую промежуточную высокотемпературную обработку, жидкофазное уплотнение полученных пористых заготовок пеком, карбонизацию под давлением и финишную термообработку.

Изобретение относится к области машиностроения и может быть использовано в производстве материала для комплектации узлов трения воздушного и наземного транспорта с повышенной энергонагруженностью, скоростных лифтов, насосной техники и других механизмов, пригодно для эксплуатации в агрессивных средах, во всех климатических зонах, в том числе при непосредственном контакте с морской и пресной водой, продуктами нефтегазовой и химической промышленности.

Изобретение относится к способам получения изделий из углерод-углеродного композиционного материала, высокопористого с открытыми ячейками, приобретающего свойства тепло- и электропроводности после графитации. Способ включает операции получения углеродной графитируемой пенопластовой заготовки с открытыми ячейками высокой пористости из мезофазного пека, которую затем уплотняют углеродным материалом посредством газовой инфильтрации и подвергают графитации.

Композиция и способ изобретения относятся к получению изделий из высокоплотной карбидокремниевой SiC/C/Si керамики для различных отраслей промышленности. Технический результат состоит в увеличении глубины силицирования углеродных заготовок, увеличении размеров изделий из силицированых графитов, повышении плотности силицированных графитов, увеличении содержания в них карбидокремниевой фазы.

Изобретение относится к химической промышленности и нанотехнологии. Поверхностно-модифицированный наноалмаз содержит наноалмазные частицы и модифицирующие его поверхность группы, имеющие полиоксиалкиленовую цепочку и атом кремния.
Наверх