Устройство для определения и визуализации температурных полей

Изобретение относится к измерительной технике, в частности может быть использовано для определения и визуализации температурных полей плоских поверхностей. Устройство состоит из основания, выполненного из высокотеплопроводного материала в виде рамки, на внутренней торцевой поверхности которой закреплена жидкокристаллическая пленка. Жидкокристаллическая пленка имеет выпуклую форму в направлении к поверхности, температурное поле которой подлежит определению и визуализации. Радиус кривизны жидкокристаллической пленки находится в пределах 80-90% от максимального значения, соответствующего абсолютно плоской поверхности. На внешней торцевой поверхности рамки по ее периметру с хорошим тепловым контактом рабочей поверхностью установлены термоэлектрические модули, опорной поверхностью сопряженные с радиаторами, питаемые электрической энергией от источника постоянного тока. Радиаторы образуют единую радиаторную систему, представляющую собой замкнутую поверхность из высокотеплопроводного материала, повторяющую контур рамки, со стороны, противоположной размещению термоэлектрических модулей, имеющую оребрение. Технический результат - повышение точности определения и визуализации температурного поля плоской поверхности за счет обеспечения более плотного контакта жидкокристаллической пленки с данной поверхностью. 1 ил.

 

Изобретение относится к измерительной технике, в частности может быть использовано для определения и визуализации температурных полей плоских поверхностей.

Прототипом изобретения является конструкция устройства, описанная в [1]. Устройство содержит основание, выполненное из высокотеплопроводного материала в виде рамки, на внутренней торцевой поверхности которой закреплена жидкокристаллическая пленка. На внешней торцевой поверхности рамки по ее периметру с хорошим тепловым контактом рабочей поверхностью установлены термоэлектрические модули (ТЭМ), опорной поверхностью сопряженные с радиаторами, питаемые электрической энергией от источника постоянного тока.

Недостатком устройства является сложность обеспечения плотного контакта жидкокристаллической пленки с поверхностью из-за ее неидеальной плоскостности, наличия шероховатостей, и соответственно, невысокая точность определения и визуализации ее температурного поля.

Целью изобретения является повышение точности определения и визуализации температурного поля плоской поверхности за счет обеспечения более плотного контакта жидкокристаллической пленки с данной поверхностью.

Цель достигается тем, что жидкокристаллическая пленка имеет выпуклую форму в направлении к поверхности, температурное поле которой подлежит определению и визуализации, причем радиус кривизны жидкокристаллической пленки находится в пределах 80-90% от максимального значения, соответствующего абсолютно плоской поверхности. При этом радиаторы образуют единую радиаторную систему, представляющую собой замкнутую поверхность из высокотеплопроводного материала, повторяющую контур рамки, со стороны, противоположной размещению ТЭМ, имеющую оребрение.

Конструкция устройства приведена на фиг. 1. Прибор состоит из основания, выполненного из высокотеплопроводного материала (например, меди) в виде рамки 1, на внутренней торцевой поверхности которой закреплена жидкокристаллическая пленка 2. Жидкокристаллическая пленка 2 имеет выпуклую форму в направлении к поверхности, температурное поле которой подлежит определению и визуализации. Радиус кривизны жидкокристаллической пленки находится в пределах 80-90% от максимального значения, соответствующего абсолютно плоской поверхности. На внешней торцевой поверхности рамки 1 по ее периметру с хорошим тепловым контактом рабочей поверхностью установлены ТЭМ 3, опорной поверхностью сопряженные с радиаторами, питаемые электрической энергией от источника постоянного тока (на фиг. 1 не показан). Радиаторы образуют единую радиаторную систему 4, представляющую собой замкнутую поверхность из высокотеплопроводного материала, повторяющую контур рамки 1, со стороны, противоположной размещению ТЭМ 3, имеющую оребрение.

Устройство работает следующим образом. С помощью ТЭМ 3, находящихся в контакте с рамкой 1, температура жидкокристаллической пленки 2 стабилизируется на определенной температуре так, чтобы вся ее поверхность имела одинаковый цвет. Затем жидкокристаллическая пленка 2 приводится в тепловой контакт с поверхностью, температура которой подлежит определению и визуализации. За счет неравномерности температуры поверхности жидкокристаллическая пленка 2 изменит цвет, причем цветовая картина будет соответствовать температурному полю поверхности. Значения температуры в каждой точке поверхности могут быть определены по градуировочным цветовым шкалам. Радиаторная система 4 предназначена для отвода теплоты и стабилизации температуры опорной поверхности ТЭМ 3.

Литература

1. Исмаилов Т.А. Термоэлектрические полупроводниковые устройства и интенсификаторы теплопередачи. СПб.: Политехника. - 2005. - 533 с., С. 457-459.

Устройство для определения и визуализации температурных полей, содержащее основание, выполненное из высокотеплопроводного материала в виде рамки, на внутренней торцевой поверхности которой закреплена жидкокристаллическая пленка, а на внешней торцевой поверхности рамки по ее периметру с хорошим тепловым контактом рабочей поверхностью установлены термоэлектрические модули, опорной поверхностью сопряженные с радиаторами, питаемые электрической энергией от источника постоянного тока, отличающееся тем, что жидкокристаллическая пленка имеет выпуклую форму в направлении к поверхности, температурное поле которой подлежит определению и визуализации, причем радиус кривизны жидкокристаллической пленки находится в пределах 80-90% от максимального значения, соответствующего абсолютно плоской поверхности, а радиаторы образуют единую радиаторную систему, представляющую собой замкнутую поверхность из высокотеплопроводного материала, повторяющую контур рамки, со стороны, противоположной размещению термоэлектрических модулей, имеющую оребрение.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности может быть использовано для определения и визуализации температурных полей плоских поверхностей. Устройство состоит из основания, выполненного из высокотеплопроводного материала (например, меди) в виде рамки, на внутренней торцевой поверхности которой закреплена жидкокристаллическая пленка.

Изобретения относятся к области измерительной техники и могут быть использованы для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов. Способ автоматизированного ультразвукового термооптического неразрушающего контроля изделий из композитных материалов включает ультразвуковое возбуждение температурного поля в области дефекта, регистрацию температурного поля и выявление дефектных областей путем сравнения величины температурного поля с пороговым уровнем.

Изобретение относится к измерительной технике и может быть использовано в качестве оптического сенсорного кабеля для проведения измерений температурного распределения по скважине при добыче нефти и газа. Оптический сенсорный кабель содержит защитную оболочку в виде внешней и по меньшей мере одной внутренней герметичных металлических трубок, расположенных коаксиально.

Описанный в настоящем документе объект изобретения относится к турбомашинам с устройствами на поверхностных (SAW) или объемных (BAW) акустических волнах, измерительным системам и способам установки. Описана система измерения параметра окружающей среды у ротора ротационной машины; в соответствии с некоторыми вариантами осуществления параметр, подлежащий измерению, представляет собой температуру, а машина, подлежащая контролю, представляет собой турбомашину.

Заявленная группа изобретений относится к области термоплазмоники, а именно устройству, обеспечивающему возможность локального нагрева исследуемого наноразмерного материала под действием непрерывного лазерного излучения и способу детектирования температуры стеклования наноразмерных полимерных материалов с помощью этого устройства с нанометровым пространственным разрешением удаленно (без воздействия на исследуемый наноразмерный материал) с помощью спектроскопии комбинационного рассеяния света.

Группа изобретения относится к приборам с использованием сверхпроводимости. Детектор сверхвысокочастотного излучения содержит вход (401) сигнала и выход (402) детектора, поглощающий элемент (404) с омической проводимостью, соединенный с входом (401) сигнала через первый отрезок (405) сверхпроводника, и элемент (406) с изменяемым импедансом, зависящим от температуры, соединенный с выходом (402) детектора через второй отрезок (407) сверхпроводника.

Группа изобретений относится к линиям электроснабжения, контактирующим с токоприемниками транспортных средств. Способ автоматического контроля контактного провода электротранспорта заключается в том, что формируют и отправляют отправку опросного сигнала, по полученным данным с датчиков силы и температуры устройства для считывания информации о температуре и силе натяжения контактного провода обрабатывают полученную информацию и передают ее оператору.

Изобретение относится к области радиотехники и измерительной техники, может быть использовано для дистанционного измерения по радио температуры в мультисенсорных системах мониторинга для предупреждения аварийных ситуаций при контроле температуры мест соединения шин электрических шкафов. В качестве чувствительных элементов температуры применены измерительные пассивные радиочастотные элементы на поверхностных акустических волнах (ПАВ).

Изобретение относится к измерительной технике, в частности может быть использовано для определения и визуализации температурных полей плоских поверхностей. Устройство состоит из основания, выполненного из высокотеплопроводного материала (например, меди) в виде рамки, на внутренней торцевой поверхности которой закреплена жидкокристаллическая пленка.

Изобретение относится к волоконно-оптическим датчикам и их изготовлению. Волоконно-оптический датчик состоит из оптоволоконного чувствительного элемента, расположенного внутри оптического волокна с акрилатным покрытием, отвержденной клеевой подложки из высокотемпературного влагостойкого эпоксидного клея, армированного буферного покрытия, а также элемента для крепления армированного буферного покрытия, выполненного из того же материала, что и указанная отвержденная клеевая подложка.

Изобретение относится к измерительной технике, в частности может быть использовано для определения и визуализации температурных полей плоских поверхностей. Устройство состоит из основания, выполненного из высокотеплопроводного материала (например, меди) в виде рамки, на внутренней торцевой поверхности которой закреплена жидкокристаллическая пленка.
Наверх