Способ изготовления фотоприемника



H01L31/1804 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2781461:

Акционерное общество "НПО "Орион" (RU)

Изобретение относится к области полупроводниковой фотоэлектроники, а именно к технологии изготовления фотоприемников с высокой фоточувствительностью, и может быть использовано для создания как дискретных, так и матричных фотоприемных устройств (МФПУ) для регистрации объектов в условиях малой освещенности в видимом и ближнем ИК диапазонах спектра. Способ изготовления фотоприемника на основе биполярного фототранзистора на полупроводниковой подложке включает в себя создание легированных областей коллектора, базы и эмиттера, формирование контактных площадок к легированным областям, при этом на поверхности базы и на прилегающие к ней области p-n-переходов эмиттер - база и коллектор - база формируют слой подзатворного диэлектрика, на который наносят проводящий слой материала затвора, перекрывающего область базы и p-n-переходы эмиттер - база и коллектор - база, при этом электрод затвора изготавливают с возможностью доступа светового потока к области базы и прилегающим к ней областям p-n-переходов. Изобретение обеспечивает повышение коэффициента усиления видеосигнала фотоприемника и упрощение технологии его изготовления. 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к области полупроводниковой фотоэлектроники, а именно, к технологии изготовления фотоприемников с высокой фоточувствительностью, и может быть использовано для создания как дискретных, так и матричных фотоприемных устройств (МФПУ) для регистрации объектов в условиях малой освещенности в видимом и ближнем РЖ диапазонах спектра.

Известны фотоприемные устройства на основе фотодиодных матриц [Интегральные матричные МОП мультиплексоры формата 128×128 и 384×288 для смотрящих ИК матриц. XVII Международная научно-техническая конференция по фотоэлектронике и приборам ночного видения. Тезисы докладов, стр. 12, Москва, 27-31 мая 2002 г.], содержащих в каждой ячейке фотодиод и переключающий элемент - МОП транзистор.

Основные недостатки фотодиодных матриц такого типа состоят в низком уровне выходного сигнала, так как в ячейке матрицы происходит только регистрация фотосигнала без его усиления, а также неполное использование площади ячейки для приема падающего излучения из-за наличия переключающих элементов.

Наиболее близким к предлагаемому способу является способ создания фотоприемных матриц с усилением фотосигнала непосредственно в ячейке матрицы, на основе биполярных или полевых транзисторов, либо лавинных фотодиодов [Матричные лавинные фотоприемные модули на основе ГЭС InGaAs, XXIV Международная научно-техническая конференция по фотоэлектронике и приборам ночного видения, стр. 583. 24-27 мая 2016. Москва, Россия.]. Обычно, коэффициент усиления сигнала в таких приборах составляет в среднем 20÷200 раз в зависимости от типа прибора. Однако, наряду с классическими способами получения приборов с внутренним усилением, существуют способы получения коэффициентов усилением в несколько тысяч раз в супербета транзисторах.

Основные недостатки рассмотренного способа состоят, во-первых, в недостаточном коэффициенте усилении фотосигнала (классические конструкции биполярного и полевого транзисторов и лавинных фотодиодов) и, во-вторых, в сложности технологического процесса получения лавинных фотодиодов и супербета транзисторов с высоким коэффициентом усиления.

Задачей изобретения является повышение коэффициента усиления видеосигнала фотоприемника и упрощение технологии его изготовления. Высокое внутреннее усиление в фотоприемнике необходимо для увеличения мощности сигнала до такого уровня, чтобы он не тонул в шуме усилителя.

Технический результат состоит в том, что на поверхности базы и на примыкающие к ней области рп - переходов эмиттер - база и коллектор -база формируют слой подзатворного диэлектрика, типично, двуокиси кремния, на который наносят проводящий слой материала затвора, перекрывающего область базы и рп - переходы эмиттер - база и коллектор -база, через который обеспечивается доступ потока излучения к области базы и рп - переходам (фиг. 1 и 2), где 1 - рп - переход коллектор - база, 2 - рп -переход эмиттер - база, 3- слой подзатворного диэлектрика, 4- скрытый сильно легированный п+ слой коллектора, 5- контакт к скрытому п+ слою коллектора, 6- затвор,7- контакт к эмиттеру и 8- контакт к затвору. На фиг. 1 затвор 6 выполнен из полупрозрачного материала, а на фиг. 2 затвор 6 изготовлен напылением металлического слоя с последующей его перфорацией для получения доступа падающего излучения к структуре фотоприемника.

Предлагаемый способ реализован на кремниевом биполярном транзисторе npnn+типа с затвором над областью базы. Рассматриваемая структура прибора является комбинацией биполярного и полевого МОП транзистора, не просто соединенными параллельно, а встроенными друг в друга и обладающая новыми свойствами. На фиг. 3 представлена электрическая схема фотоприемника, где 9 - затвор, 10 - эмиттер, а 11 - коллектор. При этом, эмиттер служит также истоком полевого фототранзистора, коллектор его стоком, а приповерхностная область базы служит подзатворной областью полевого транзистора.

Затвор выполняет двойную функцию: служит электродом, создающим электрическое поле в приповерхностной области базы, а также обеспечивает пропускание падающего излучения на прибор. Затвор может быть выполнен из полупрозрачного материала, например поликристаллического слоя кремния, или тонких полупрозрачных слоев различных металлов. Возможно создание затвора и из непрозрачных толстых слоев металлов, используемых в стандартной технологии БИС (алюминий). При этом, для осуществления доступа излучения к прибору, в непрозрачном слое металла делают сквозную перфорацию.

В зависимости от полярности и величины напряжения на затворе, приповерхностная подзатворная область базы может быть обогащена или обеднена при подаче на затвор отрицательного или положительного напряжения, соответственно. Обычно прибор используется в режиме с "оборванной" или "плавающей" базой, когда коэффициент усиления фототока биполярного фототранзистора максимален. В измерительную цепь фотоприемник включается как трехполюсник Э-К-З, где З - затвор, который служит управляющим электродом, на него подается смещение требуемой величины и полярности, определяющее коэффициент передачи. Электрическая схема включения прибора фотоприемника показана на фиг. 4. Напряжение смещения, подаваемое на затвор от источника питания ИП1, регистрируется вольтметром В1, напряжение на коллекторе от ИП2 измеряется вольтметром В2. Фототок через транзистор фиксируется измерителем тока А. Структуры выполнены на подложке п+- типа, поэтому все питающие напряжения прибора положительны относительно эмиттера-истока.

При нулевом напряжении на затворе прибор работает как биполярный транзистор, полевой транзистор отключен. Коэффициент передачи прибора, в том числе и усиление фототока, определяется коэффициентом усиления β биполярного транзистора. При подаче небольшого положительного напряжения на затвор приповерхностная область базы прибора переходит в режим обеднения, так называемый подпороговый режим. С увеличением напряжения на затворе толщина обедненного слоя растет, но еще не образуется канал и нет сквозного тока через транзистор. При освещении подзатворная область прибора переходит из режима обеднения в режим слабой инверсии, возникает сквозной фототок, величина которого определяется потоком излучения и напряжениями на электродах прибора. Коэффициент передачи в этом режиме максимален и может составлять величину 106 раз. При дальнейшем увеличении напряжения на затворе до порогового значения формируется индуцированный канал, даже без освещения, и прибор переходит в режим насыщения, коэффициент передачи фототока при этом снижается. Типичная вольтамперная характеристика фотоприемника Iк=f(Uз) представлена на фиг. 5, где Iк - фототок коллектора, Uз - управляющее напряжение на затворе, параметром служит величина падающего на прибор излучения F. На ВАХ прибора хорошо просматриваются различные режимы его работы прибора, причем угол наклона к горизонтальной оси отражает величину коэффициента передачи прибора. Следует отметить, что кроме фототока усиливается и темновой ток прибора. Однако, при современной технологии изготовления кремниевых приборов, его величина незначительна.

Коэффициент передачи фототока определялся как отношение фототока фототранзистора в рабочем режиме к фототоку фотодиода, образованного рп - переходом коллектор - база того же прибора.

Фотоприемник выполнен по стандартной технологии изготовления кремниевых транзисторов, что значительно снижает затраты на его изготовление по сравнению с прецизионными технологиями изготовления лавинных фотодиодов и супер-бета транзисторов.

По предлагаемому способу разработаны и изготовлены фотоприемники различной конструкции и топологии (~20 шт.) и на всех приборах, в той или иной степени, подтвердилась возможность получения высоких коэффициентов передачи фототока.

1. Способ изготовления фотоприемника на основе биполярного фототранзистора на полупроводниковой подложке, включающий в себя создание легированных областей коллектора, базы и эмиттера, формирование контактных площадок к легированным областям, отличающийся тем, что на поверхности базы и на прилегающие к ней области p-n-переходов эмиттер - база и коллектор - база формируют слой подзатворного диэлектрика, на который наносят проводящий слой материала затвора, перекрывающего область базы и p-n-переходы эмиттер - база и коллектор - база, при этом электрод затвора изготавливают с возможностью доступа светового потока к области базы и прилегающим к ней областям p-n-переходов.

2. Способ по п. 1, отличающийся тем, что проводящий электрод затвора изготавливают из полупрозрачного материала.

3. Способ по п. 1, отличающийся тем, что проводящий электрод затвора изготавливают из непрозрачного материала с перфорацией над областью базы.



 

Похожие патенты:

Изобретение относится к оптике. Оптический экран для фотовольтаической (ФВ) ячейки, содержащий по меньшей мере один несущий элемент, снабженный серией заглубленных в него оптических функциональных полостей, образующих по меньшей мере один заданный оптический рельефный паттерн.

Некоторые примеры осуществления относятся к электрическим потенциалоуправляемым затемняющим экранам, используемым со стеклопакетами, к стеклопакетам, включающим в себя такие затемняющие экраны, и/или связанным с ними способам. В таком стеклопакете между подложками, образующими стеклопакет, размещен динамический затемняющий экран, выполненный с возможностью перемещения между отведенным и выдвинутым положениями.

Изобретение относится к солнечной энергетике и может быть использовано в космических концентраторных солнечных энергоустановках при базировании на космическом летательном аппарате. Концентраторная солнечная батарея включает основание, параболоцилиндрические концентраторы с зеркальной внутренней поверхностью отражения, установленные на основании, цилиндрические направляющие которых параллельны основанию и друг другу, линейные цепочки фотоэлектрических преобразователей, установленные на верхней кромке тыльной стороны каждого последующего концентратора в фокальной линии каждого предыдущего концентратора.

Концентраторный фотоэлектрический модуль с планарными элементами включает по меньшей мере один планарный неконцентраторный кремниевый фотоэлектрический преобразователь (3) с двухсторонней чувствительностью, множество концентраторных А3В5 фотоэлектрических преобразователей (5), смонтированных на теплоотводящие основания (6), и расположенных на поверхности неконцентраторного фотоэлектрического преобразователя (3), закрытого защитной светопрозрачной панелью (4), концентрирующую оптическую систему (7), состоящую из множества собирающих линз (8).

Стеклопакет с электрическим потенциалоуправляемым затемняющим экраном (202a, 202b) и связанные с ним способы. В таком стеклопакете между двумя подложками (102, 104), образующими стеклопакет, размещен динамически управляемый затемняющий экран (202a, 202b), выполненный с возможностью перемещения между отведенным и выдвинутым положениями.

Изобретение относится к дистанционирующим элементам (спейсерам), подходящим для применения с фотоэлектрическими устройствами. Предлагается дстанционирующий элемент для изолирующих стеклопакетов с тремя или более панелями остекления, ограничивающими по меньшей мере одно герметично закрытое внутреннее пространство между по меньшей мере двумя панелями остекления, содержащий: корпус (2) дистанционирующего элемента, изготовленный из первого материала и проходящий в продольном направлении (Z), с двумя внешними поверхностями (АР) в поперечном направлении (X), перпендикулярном продольному направлению (Z), для прикрепления к внешним панелям (3, 4) остекления изолирующего стеклопакета, и газонепроницаемый барьер (40), выполненный из второго материала, причем корпус дистанционирующего элемента имеет поперечное сечение (X-Y), перпендикулярное продольному направлению (Z), с первой камерой (10) для размещения осушающего материала, расположенной рядом с первой (АР, 13) из двух внешних поверхностей, со второй камерой (20) для размещения осушающего материала, расположенной рядом со второй (АР, 23) из двух внешних поверхностей, и с пазом (30), расположенным между первой и второй камерами (10, 20) в поперечном направлении (X) и открытым на первой стороне дистанционирующего элемента в вертикальном направлении (Y), перпендикулярном продольному и поперечному направлениям (Z, X), газонепроницаемый барьер (40) расположен на и/или в корпусе дистанционирующего элемента в вертикальном направлении (Y) на второй его стороне, которая находится напротив первой стороны дистанционирующего элемента, и паз (30) ограничен в поперечном направлении двумя боковыми сторонами (14, 24) и в вертикальном направлении на второй стороне нижней стенкой (31), паз (30) приспособлен для введения в него внутренней панели (5) остекления, причем дистанционирующий элемент содержит по меньшей мере две электропроводные части (51, 52, 44, 53, 54), электрически изолированные друг от друга и расположенные в одной или в обеих боковых стенках (14, 24) и/или в нижней стенке (31) паза (30).

Изобретение может быть использовано в оптических системах связи, в системах измерения в качестве оптоэлектронного датчика, в том числе при регистрации одиночных фотонов в системах квантовой криптографии, в интегральной оптоэлектронике и системах тестирования интегральных схем, а также в других областях, предполагающих регистрацию оптического сигнала.

Изобретение относится к фотоприемным устройствам инфракрасного диапазона длин волн и технологии их изготовления. Фоточувствительная к инфракрасному излучению структура включает подложку, расположенный на подложке первый слой из CdxHg1-xTe с переменным составом, в котором х изменяется от 1 на границе с подложкой до хПС на границе с поглощающим слоем, расположенный на первом слое с переменным составом однородный по составу поглощающий слой из CdxHg1-xTe с составом хПС=0,22-0,4 толщиной 2-4 мкм, расположенный на поглощающем слое второй слой из CdxHg1-xTe с переменным составом, в котором х изменяется в пределах от хПС на границе с поглощающим слоем до хБ на границе с барьерным слоем, расположенный на втором слое с переменным составом однородный по составу барьерный слой из CdxHg1-xTe с составом хБ=0,6-0,7 толщиной 0,2-0,5 мкм, расположенный на барьерном слое третий слой из CdxHg1-xTe с переменным составом, в котором х изменяется в пределах от хБ на границе с барьерным слоем до хКС на границе с контактным слоем, расположенный на третьем слое с переменным составом однородный по составу контактный слой из CdxHg1-xTe с составом хКС=0,22-0,4 толщиной 1-2 мкм, расположенный на контактном слое четвертый слой из CdxHg1-xTe с переменным составом, в котором х изменяется в пределах от хКС на границе с контактным слоем до хД=0,6-1,0, при этом на четвертом слое из CdxHg1-xTe с переменным составом располагается пассивирующий слой, а металлический полевой электрод из In нанесен на поверхность пассивирующего слоя, причем геометрические размеры полевого электрода выбирают таким образом, чтобы минимальное расстояние от края полевого электрода до края площадки, ограничивающей область фоточувствительной структуры, было бы равно 1,0-1,2 мкм.

Изобретение относится к оптоэлектронике, светотехнике, приборам, излучающим в видимом и инфракрасном диапазонах. Может быть использовано для разработок и производства источников с управляемым спектром излучения в медицине, технике, быту.

Изобретение относится к толстопленочной микроэлектронике, а именно к технологиям, используемым при производстве солнечных элементов на основе гетероперехода. Технический результат - обеспечение максимальных значений электропараметров солнечных элементов при существенном повышении производительности их изготовления.

Изобретение относится к области микроэлектроники и может быть использовано в изготовлении матричных фоточувствительных элементах (МФЧЭ) на квантовых ямах (QWIP). Задачей настоящего изобретения является способ определения достаточности глубины ионно-лучевого травления сложных полупроводниковых структур с отличающимися по скоростям травления составляющих структуру слоев, с наклонными боковыми поверхностями меза-элементов матрицы, с обеспечением необходимой достаточности глубины травления структуры до нижнего контактного слоя n+, не допуская нарушения связности (целостности) нижнего контактного слоя, что обеспечивает разделение сплошной ГЭС структуры на множество меза-элементов матрицы, соединенных нижним контактным слоем, открытым для соединения со схемой считывания.
Наверх