Способ получения водорода из метана

Изобретение может быть использовано в топливной и химической промышленности. Способ получения водорода и этилена из метана включает подачу потока метана в реактор, использование катализатора, содержащего частицы металла, выбранного из группы: никель, титан, молибден, железо, кобальт, нагрев катализатора посредством электромагнитного воздействия с последующим выделением водорода и этилена при конверсии метана. Катализатор в виде нанопорошка подают в реактор тороидальной формы одновременно с потоком метана. Вентилятор внутри реактора перемешивает и направляет пылегазовую смесь в зону индукционного нагрева, где в результате нагрева катализатора до 810-850°С проходят реакции димеризации и дегидрирования с образованием водорода и этилена, которые стабилизируются в последующей холодной зоне реактора. Изобретение позволяет получать водород и этилен с КПД близким к 90%. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области топливной и химической промышленности, а именно к способам переработки углеводородного газа, и может быть использовано для производства водорода и этилена.

Углеводородный газ, в частности метан, может взаимодействовать с каталитическими частицами активизированными электромагнитным излучением, при этом происходит индукционная конверсия метана, то есть идет прямой неокислительный синтез водорода и этилена из метана при воздействии электромагнитного излучения на каталитические частицы.

Известно решение лазерной конверсии метана в газопылевом облаке. Нагрев наночастиц катализатора обеспечивается СО2-лазерным излучением. Углекислотные лазеры излучают в инфракрасном диапазоне (ИК-диапазон). Длина волны составляет от 9,4 до 10,6 мкм. Данный принцип основан на свойстве переходов между колебательными и вращательными уровнями молекулы CO2. Основой принципа работы углекислотного лазера является передача энергии накачки объектам, попавшим в луч. Газовая смесь может иметь различные пропорции, в зависимости от специфики задач и применения углекислотного лазера. Недостатком данного решения является малый коэффициент полезного действия (КПД) СО2-лазерного излучения. Стандартные изделия имеют КПД около 20%,отдельные образцы углекислотных лазеров могут достигать КПД до 30%, что является самым высоким показателем эффективности среди лазеров на данный момент развития лазерной техники. Дополнительным недостатком данного решения является затухание и падение мощности углекислотного лазерного излучения при прохождении сквозь пылевое облако каталитических частиц, что ограничивает полезный активный объем реактора и ограничивает насыщенность газопылевого облака каталитическими частицами (опубл. https://www.nsktv.ru/news/technology/novosibirskie_khimiki_predlozhili_poluchat_vodorod_i_etilen_s_pomoshchyu_lazera/).

Известен «Способ получения обогащенного водородом топлива посредством разложения метана на катализаторе при микроволновом воздействии» (патент RU 2423176, опубл. 10.07.2011). Способ характеризуется наличием потока метанового газа со скоростью около 120 мл/мин, использованием катализатора, содержащего частицы металла, выбранного из групп Ni81Al, Ni93Al, Ni77Cu16Al, Ni54Cu27Al и Ni83Mg6Al, с размером частиц диаметром от 74 до 140 мкм, нагреванием катализатора с помощью микроволнового излучения мощностью в диапазоне от 150 до 300 Вт. Состав газообразного продукта включает от 20 до 30 об.% водорода и от 70 до 80 об.% метана. Недостаток данного метода - получение только водорода и малый его выход, до 30%.

Известен «Способ получения углерода и водорода из углеводородного газа и устройство для его осуществления» (патент RU 2317943, опубл. 27.02.2008). Суть способа заключается в получении углерода и водорода из углеводородного газа и включает в себя предварительный нагрев и последующее разложение углеводородного газа под воздействием сверхвысокочастотного электромагнитного поля с выделением и сепарацией углерода и водорода. Предварительный нагрев углеводородного газа происходит под действием энергии сверхвысокочастотного электромагнитного поля в тепловой зоне проточного реактора протяженной формы, равномерно заполненной газопроницаемым, электропроводящим веществом-инициатором, выбранным из группы: титан, никель, никелид титана, никелид алюминия, молибден, при этом разложение углеводородного газа осуществляют на выходе из тепловой зоны реактора при повышенной, по сравнению с тепловой зоной реактора, напряженности сверхвысокочастотного электромагнитного поля. Устройство содержит проточный реактор с раздельными входом углеводородного газа и выходом углерода и водорода и источник энергии сверхвысокочастотного электромагнитного поля, связанный со сверхвысокочастотным волноводом. Проточный реактор помещен в сверхвысокочастотный волновод прямоугольной формы, при этом проточный реактор выполнен в виде продолговатой цилиндрической камеры из радиопрозрачного термостойкого материала, частично заполненной газопроницаемым, электропроводящим веществом-инициатором, выбранным из группы: титан, никель, никелид титана, никелид алюминия, молибден, и снабжен концентратором сверхвысокочастотного электромагнитного поля, размещенным непосредственно после вещества-инициатора. Каталитические структуры выполнены в виде пористых гранул с поперечными размерами 0,1-2,0 мм. Недостатком данного метода является малая реакционно способная площадь катализатора.

Указанные проточные каталитические способы по совокупности существенных признаков наиболее близки к заявленному изобретению.

Технической проблемой, решение которой обеспечивается при осуществлении предлагаемого изобретения, является высокая стоимость и низкая производительность процесса получения водорода для дальнейшего его использования, например, в качестве перспективного топлива для космической, авиационной, автотранспортной отрасли. Также для промышленных предприятий является актуальной потребность в простом и экономически оправданном способе прямой димеризации метана в этилен до температуры 1000°С.

Техническим результатом заявленного изобретения является высокопроизводительный способ получения двух высокомаржинальных продуктов: водорода и этилена, пригодный для использования в малотоннажном производстве при оптимальных энергозатратах с возможностью реализации способа как на стационарных промышленных установках большого размера, так и в мобильном исполнении на транспортных средствах.

Технический результат достигается за счет того, что способ получения водорода из метана, включающий подачу потока метана в реактор, использование катализатора, содержащего частицы металла, выбранного из группы: никель, титан, молибден, железо, кобальт, нагрев катализатора посредством электромагнитного воздействия с последующим выделением водорода при конверсии метана, согласно изобретению, катализатор в виде нанопорошка подают в реактор тороидальной формы одновременно с потоком метана, вентилятор внутри реактора перемешивает и направляет пылегазовую смесь в зону индукционного нагрева, где в результате нагрева катализатора проходят реакции димеризации и дегидрирования с образованием водорода и этилена, которые стабилизируются в последующей холодной зоне реактора.

В предлагаемом изобретении, в отличие от аналогов, происходит не оптический или микроволновый, а индукционный нагрев каталитических частиц внутри метановой среды. КПД такого решения близок к 90%, а количество частиц, попадающих под влияние электромагнитного излучения индукционного источника на порядок выше, чем, например, от углекислотного лазерного луча. Нагрев каталитических частиц происходит равномерно во всей зоне индукционного нагрева реактора. Наноразмер каталитических частиц позволяет увеличить реакционную площадь по сравнению с микропараметрами.

Настоящее изобретение иллюстрируется схемой на фиг.1, где 1 - патрубок для подачи природного газа (метана) и нанопорошка катализатора, 2 - тороидальный реактор, 3 - лопастной вентилятор, 4 - пылегазовая смесь нанопорошка катализатора и метана, 5 - зона индукционного нагрева, 6 - патрубок для выхода полезных продуктов в виде смеси метана, водорода и этилена.

Способ получения водорода из метана с помощью нанодисперсного катализатора и индукционного нагрева осуществляется следующим образом.

Тороидальный реактор 2 выполнен из трубы в виде кольца из немагнитных материалов. Размер внутреннего диаметра трубы реактора 2 составляет 3…5 размеров внутреннего диаметра патрубка 1 подачи метана. Вокруг ректора 2 в активной зоне 5 располагается индукционная нагревательная спираль. Реактор имеет по меньшей мере одну активную зону конверсии метана с электромагнитным (индукционным) нагревом и неактивную зону для стабилизации новых продуктов. По патрубку 1 в тороидальный реактор 2 подается поток метана и порошок катализатора, содержащего наночастицы металла, выбранного из групп: никель, титан, молибден, железо и кобальт, размер частиц составляет (10…50)⋅10-9 м. Размерность и состав композиции каталитических частиц влияет на выход продукта. Лопастной вентилятор 3 обеспечивает равномерное перемешивание природного газа и нанопорошка катализатора, что способствует образованию пылегазовой смеси 4. Лопастной вентилятор 3 направляет движение пылегазовой смеси 4 вдоль стенок реактора 2 в зону индукционного нагрева 5, где происходит конверсия метана, и регулирует скорость прохождения потоком активной зоны индукционного нагрева. При прохождении индукционной зоны 5 наночастицы катализатора нагреваются до температуры 810…850°С. Вокруг нагретых каталитических частиц происходит образование активных центров конверсии метана, цепные реакции димеризации и дегидрирования, с образованием водорода и этилена. Наноразмерность каталитических частиц увеличивает реакционную поверхность активных центров, по отношению к стандартным пористым каталитическим системам. Электромагнитные потоки, помимо нагрева наночастиц, отталкивают их от стенок реактора в центр сечения трубы тороида, и тем самым предотвращают осыпание нанопорошка катализатора на стенки реактора под действием силы тяжести. Поскольку электромагнитное излучение нагревает только каталитические частицы, то метановая среда и стенки реактора остаются холодными или подвергаются незначительному нагреванию от нагретых каталитических частиц. При выходе потока среды 4 из активной индукционной зоны 5 каталитические частицы остывают, при этом новые продукты конверсии и синтеза стабилизируются в ненагретой среде метана. Движение каталитических наночастиц по тороиду носит цикличный характер. Выход полезных продуктов в виде смеси метана, водорода и этилена осуществляется через выходной патрубок 6.

1. Способ получения водорода и этилена из метана, включающий подачу потока метана в реактор, использование катализатора, содержащего частицы металла, выбранного из группы: никель, титан, молибден, железо, кобальт, нагрев катализатора посредством электромагнитного воздействия с последующим выделением водорода и этилена при конверсии метана, отличающийся тем, что катализатор в виде нанопорошка подают в реактор тороидальной формы одновременно с потоком метана, вентилятор внутри реактора перемешивает и направляет пылегазовую смесь в зону индукционного нагрева, где в результате нагрева катализатора до температуры 810…850°С проходят реакции димеризации и дегидрирования с образованием водорода и этилена, которые стабилизируются в последующей холодной зоне реактора.

2. Способ по п. 1, отличающийся тем, что размер частиц нанопорошка катализатора составляет (10…50)⋅10-9 м.



 

Похожие патенты:

Изобретение относится к композиции многослойного нанесенного на носитель катализатора, способу ее получения и способу получения олефинов окислительной конденсации метана (ОСМ). Композиция характеризуется общей формулой AaZbEcDdOx/альфа-Al2O3 и содержит носитель на основе альфа-Al2O3, первый единичный оксидный слой, один или несколько смешанных оксидных слоев и необязательный второй единичный оксидный слой; где А - щелочноземельный металл; где Z - первый редкоземельный элемент; где Е - второй редкоземельный элемент; где D - окислительно-восстановительный реагент или третий редкоземельный элемент; причем первый редкоземельный элемент, второй редкоземельный элемент и третий редкоземельный элемент, при его наличии, не являются одинаковыми; где а равно 1,0; где b составляет от около 0,1 до около 10,0; где с составляет от около 0,1 до около 10,0; где d составляет от около 0 до около 10,0; где x уравновешивает степени окисления.

Изобретение относится к композиции нанопластинчатого катализатора окислительной конденсации метана (ОКМ), содержащей равное или более чем около 25 мас.% нанопластин в расчёте на общую массу композиции нанопластинчатого катализатора ОКМ; в которой нанопластина представляет собой трёхмерный объект, определяемый в соответствии со стандартом ISO/TS 80004-2:2015; при этом нанопластина характеризуется первым внешним размером, вторым внешним размером и третьим внешним размером; при этом первый внешний размер является толщиной (t) нанопластины, и причём t равно около 100 нм или меньше; при этом вторым внешним размером является длина (l) нанопластины, и притом l больше t; при этом третьим внешним размером является ширина (w) нанопластины, и притом w больше t; причём l и w могут быть одинаковыми или различными; и при этом (i) l ≥ 5t, (ii) w ≥ 5t или (iii) l ≥ 5t и w ≥ 5t; и при этом композиция нанопластинчатого катализатора ОКМ описывается общей формулой AaZbEcDdOx, в которой A является щёлочно-земельным металлом, Z представляет собой первый редкоземельный элемент, E представляет собой второй редкоземельный элемент, D представляет собой третий редкоземельный элемент; в которой первый редкоземельный элемент, второй редкоземельный элемент и третий редкоземельный элемент, при его наличии, не являются одинаковыми; в которой первый редкоземельный элемент выбран из группы, состоящей из лантана (La), неодима (Nd) и их сочетаний; в которой второй редкоземельный элемент и третий редкоземельный элемент могут быть независимо выбраны из группы, состоящей из скандия (Sc), церия (Ce), празеодима (Pr), прометия (Pm), самария (Sm), европия (Eu), гадолиния (Gd), иттрия (Y), тербия (Tb), диспрозия (Dy), гольмия (Ho), эрбия (Er), тулия (Tm), иттербия (Yb), лютеция (Lu) и их сочетаний; в которой a равно 1,0; b составляет от значения около 1,0 до около 3,0; с составляет от 0 до около 0,3; d составляет от 0 до около 0,3; при этом x уравновешивает степени окисления.

Предложен способ получения одного или более желаемых химических продуктов, выбранных из группы, состоящей из пропена, изобутена, 1-бутена, 2-бутена и стирола, включающий приведение гетерогенного катализатора, содержащего соединение, выбранное из группы, состоящей из B-нитрида, B-карбида, Ti-борида, Ni-борида, Nb- борида, Si-нитрида, Ti-нитрида и Al-нитрида, в контакт с кислородом и одним или более жидкими или газообразными реагентами, выбранными из группы, состоящей из пропана, н-бутана, изобутана и этилбензола, причем гетерогенный катализатор катализирует окислительное дегидрирование (ОДГ) одного или более жидких или газообразных реагентов с образованием одного или более желаемых химических продуктов.

Изобретение относится к способу окислительной конденсации метана для получения углеводородных соединений, содержащих по меньшей мере два атома углерода (соединения C2+). Способ включает: (a) направление потока сырья, содержащего метан, из углеводородного процесса в реактор окислительной конденсации метана (ОКМ), при температуре на впуске в диапазоне от 400°C до 600°C, причем реактор ОКМ функционирует в по существу адиабатических условиях и выполнен с возможностью осуществления одной или более реакций ОКМ для получения из указанного метана, содержащего соединения C2+, выходного потока из реактора, и указанный углеводородный процесс представляет собой процесс не-ОКМ, где в ходе одной или более реакций ОКМ в реакторе ОКМ имеет место положительный температурный профиль вдоль реактора ОКМ, причем данный положительный температурный профиль включает первую температуру потока сырья на впуске в реактор и вторую температуру выходного потока из реактора, где вторая температура является более высокой, чем первая температура; (b) выполнение указанных одной или более реакций ОКМ в реакторе ОКМ с использованием указанного метана для получения выходного потока из реактора, содержащего одно или более соединений C2+; (c) разделение выходного потока из реактора на по меньшей мере первый поток и второй поток, причем первый поток имеет более низкое содержание C2+, чем указанный второй поток, и указанный второй поток имеет более высокое содержание C2+, чем указанный поток продуктов ОКМ; и (d) направление указанного второго потока в указанный углеводородный процесс.

Изобретение относится к установке для производства этилена, содержащей: реактор (2), предназначенный для осуществления окислительной конденсации метана, секцию обработки (3), соединенную с реактором (2), оснащенную для разделения первого массового потока (S), произведенного во время окислительной конденсации метана, по меньшей мере на C1- массовый поток и на поток этиленового продукта (P), и секцию разделения (4), соединенную с секцией обработки (3), оснащенную для разделения C1- массового потока по меньшей мере на обогащенный водородом поток продукта (H) и на обедненный водородом поток остаточного газа (S').

Изобретение относится к реактору для каталитической паровой и пароуглекислотной конверсии углеводородов, содержащему цилиндрический корпус с эллиптическим дном, закрытый крышкой, при этом во внутренней полости корпуса вдоль цилиндрической его части закреплены на крышке множество вертикальных нагревательных труб байонетного типа, оборудованных горелками и штуцерами подвода топлива, окислителя и штуцером отвода дымовых газов, которые установлены вдоль цилиндрической части.

Изобретение относится к способу получения ацетилена окислительным пиролизом метана в присутствии кислородсодержащего газа и катализатора, нагреваемого до температуры 750-1200°C путем пропускания через него электрического тока. Способ характеризуется тем, что в качестве катализатора используют оксиды со структурой перовскита с общей формулой Ba0.5Sr0.5Co0.8-xWxFe0.2O3-δ, где х=0-0,1; δ=0,4-0,6, формованные в виде трубок, метан пропускают снаружи трубки катализатора, а кислородсодержащий газ - внутри трубки катализатора.

Изобретение относится к способу получения этилена, включающему стадию окислительной конденсации метана (ОКМ) в газовой смеси при атмосферном давлении и повышенной температуре в присутствии катализатора, содержащего марганец и вольфрамат натрия на носителе - оксиде кремния. Способ характеризуется тем, что на стадии ОКМ используют катализатор, дополнительно содержащий оксид церия, при следующем соотношении компонентов, мас,%: марганца 1-2, вольфрамата натрия 3-5, оксида церия 3-4 и оксида кремния остальное, и процесс проводят в проточном 2-полочном реакторе путем контактирования стационарного слоя катализатора ОКМ, расположенного на верхней полке полочного реактора и нагретого до температуры 750-800°C, с метано-воздушной либо метано-кислородной смесью при соотношении CH4/O2=4-7/1 при объемной скорости подачи газового сырья 1000-5000 ч-1 с последующим смешением образовавшихся при этом нагретых до температуры 750-800°C реакционных газов, содержащих этан-этиленовую фракцию с дополнительным количеством холодного воздуха, подаваемого в межполочное пространство, и полученную газовую смесь при соотношении C2H6/O2=2/1 подают на нижнюю полку реактора и подвергают контактированию с находящимся там катализатором реакции окислительного дегидрирования этана, представляющим собой смешанную оксидную композицию состава Mo1.0V0.37Te0.17Nb0.12O3, нагретым до температуры 380-420°C.

Изобретение относится к каталитическим процессам переработки метансодержащих газов, в частности к способам повышения каталитической активности молибден-цеолитного катализатора для получения ароматических углеводородов. Способ активации заключается в том, что на первом этапе катализатор нагревают в потоке водорода до температуры 675…725°С и выдерживают при этой температуре в течение 1…4 часов, на втором его охлаждают до температуры не выше 50°С и выдерживают при данной температуре в среде инертного газа в течение 0,5…3 ч, а на третьем этапе катализатор повторно нагревают в потоке водорода до температуры первого этапа и выдерживают при указанной температуре в течение 0,5…2 часов.

Изобретение относится к способу получения ароматических углеводородов из этана в присутствии катализатора. Способ характеризуется тем, что газовую смесь этана и кислорода, взятую в объемном соотношении 60-70 и 30-40 соответственно, подвергают контактированию с нагретым до 400-450°C катализатором, представляющим собой двухслойную композицию в виде смешанной оксидной Mo1.0V0.37Te0.17Nb0.12O3 составляющей, расположенной в проточном реакторе на входе газового сырья, и цеолита HZSM-5, расположенного далее по ходу движения сырья, при этом компоненты катализатора взяты в объемном соотношении 20-30 и 70-80 соответственно, и процесс проводят при атмосферном давлении и объемной скорости подачи газового сырья 1000-2000 ч-1.

Настоящее изобретение относится к методам получения катализаторов путем изменения кислотных свойств носителя активной фазы катализатора, к катализатору и применению катализатора для синтеза этилена или пропилена, включающему реакцию метатезиса олефинов, в которой в качестве исходного сырья используют смесь олефиновых углеводородов С2-С4.
Наверх