Модифицированная ячейка хулла для гальваностатического и потенциостатического режимов электролиза

Изобретение относится к области гальванотехники и может быть использовано для исследования электрохимических процессов формирования гальванических покрытий. Модифицированная ячейка Хулла для проведения экспресс-анализов технологических параметров, относящихся к растворам электролитов, включает ячейку объемом 267 мл, 320 мл или 1000 мл, изготовленную из химически стойкого полимерного материала или стекла, в которой катод расположен по отношению к аноду под углом 51°, при этом в конструкции ячейки кроме катода и анода предусмотрен третий электрод - электрод сравнения, капилляр от которого подведен к фронтальной поверхности рабочего электрода через отверстие в нем. Технический результат: возможность использования ячейки как в гальваностатическом, так и в потенциостатическом режимах электролиза, в том числе в импульсном режиме. 1 табл., 2 ил.

 

Изобретение относится к устройствам для исследования электрохимических процессов формирования гальванических покрытий металлами и сплавами.

В современной гальванотехнике широко применяются ячейки Хулла для экспресс-анализа технологических параметров, относящихся к растворам электролитов:

• зависимость качества покрытий от плотности тока;

• установление диапазона рабочих плотностей тока;

• сравнительная оценка кроющей и рассеивающей способности электролитов;

• определение количества блескообразующих добавок, необходимых для корректирования электролита;

• входной контроль качества блескообразующих добавок, основных компонентов электролита и анодов;

• оценка степени загрязнения электролита ионами тяжелых металлов и органическими веществами и др [1].

Классическим вариантом ячейки Хулла является ячейка объемом 267, 320 или 1000 мл и углом катода по отношению к аноду 51°. Причем ячейки, имеющие объем 267 и 320 мл отличаются только уровнем раствора [2, 3]. В качестве катода используют плоские пластины размером 100х70х0,5…2 мм, изготовленные из меди, латуни или стали, полированные с рабочей стороны. Подготовка поверхности катодов перед электроосаждением стандартная - обезжиривание (любым доступным способом), активация в 5 - 10 %-ном растворе серной кислоты или 30%-ном растворе хлороводородной кислоты, промывка. В качестве анода используют пластины размером 60х70х1…8 мм из соответствующего процессу анодного материала. Для увеличения поверхности анода тонкую пластину можно гофрировать, а толстой пластине придают пилообразный профиль.

Расположение катода по отношению к аноду под углом 51° обеспечивает логарифмическую зависимость катодной плотности тока по длине катода:

где - катодная плотность тока в точке катода на расстоянии , - сила тока на ячейку, и - эмпирические коэффициенты [4].

При электроосаждении в такой ячейке при силе тока на ячейку 1 А на катодной пластине реализуются плотности тока от 0,05 - 0,1 А/дм2 (дальний от анода участок) до 8 - 9 А/дм2 (ближний к аноду участок).

Многообразие особенностей исследуемых параметров и режимов электролиза привело к необходимости модернизации конструкции ячейки. В настоящее время промышленно производятся ячейки Хулла, оснащенные системой термостатирования, барботирования различными газами, ультразвуковым воздействием на электроды и раствор, системой механического перемешивания электролита [2, 5]. Еще в [5] описаны погружные и подвешиваемые ячейки для использования в промышленных гальванических ваннах.

Недостатком конструкции этих ячеек является ограниченное и невоспроизводимое перемешивание раствора. Ячейка Хулла обычно работает в условиях свободной конвекции, но в некоторых случаях перемешивание раствора осуществляется за счет пузырьков газа вблизи катода, с помощью магнитной мешалки или с помощью возвратно-поступательной лопасти.

Для обеспечения постоянных гидродинамических условий во время эксперимента предложены ячейки [6-8], включающие вращающийся цилиндрический электрод. Конструкция ячеек обеспечивает первичное распределение тока, которое полностью соответствует распределению тока в классической ячейке Хулла.

Использование вышеописанных конструкций возможно только для гальваностатического режима электролиза. Применение потенциостатического режима требует введения в ячейку электрода сравнения для контроля потенциала рабочего электрода. Введение электрода сравнения или капилляра Луггина-Габера непосредственно в электролит между анодом и катодом приводит к экранированию части поверхности катода и искажению результатов.

Из применяемых в настоящее время конструкций ячейки Хулла наиболее близкой по технической сущности к предлагаемой конструкции, выбранная авторами в качестве прототипа, является классическая ячейка Хулла объемом 267, 320 или 1000 мл, в которой катод расположен под углом к аноду 51° [5].

Недостатком конструкции прототипа является отсутствие возможности проведения исследований в потенциостатическом режиме электролиза.

При проведении исследований в потенциостатическом режиме электролиза необходимо внести изменения в конструкцию ячейки, чтобы была возможность контролировать значение потенциала рабочего электрода. Модификация конструкции должна обеспечить выполнение следующих условий:

• капилляр электрода сравнения должен быть расположен максимально близко к поверхности рабочего электрода;

• электрод сравнения не должен экранировать поверхность рабочего электрода

Техническим результатом реализации предлагаемой конструкции модифицированной ячейки Хулла, является возможность ее использования как в гальваностатическом, так и потенциостатическом режимах электролиза (в т.ч. импульсном).

Это достигается тем, что модифицированная ячейка Хулла для проведения экспресс-анализов технологических параметров, относящихся к растворам электролитов, включает ячейку объемом 267 мл, 320 мл или 1000 мл, изготовленную из химически стойкого полимерного материала или стекла, в которой катод расположен по отношению к аноду под углом 51°, дополнительно в конструкции ячейки кроме катода и анода предусмотрен третий электрод - электрод сравнения, капилляр от которого подведен к фронтальной поверхности рабочего электрода через отверстие в нем (фиг. 1).

На фиг. 1 расположение электродов в ячейке (а) и внешний вид модифицированной ячейки Хулла:

1 - модифицированная ячейка Хулла, 2 - вспомогательный электрод, 3 - отверстие для капилляра, 4 - рабочий электрод, 5 - электролитический ключ, 6 - насыщенный раствор хлорида калия, 7 - электрод сравнения

Не выявлены решения, имеющие признаки заявляемого изобретения.

Конструкция ячейки апробирована при проведении исследований процесса электроосаждения покрытий никелем из кислых электролитов с добавкой молочной кислоты [9] как в гальваностатическом, так и в потенциостатическом режимах электролиза.

На фиг. 2 приведены фотографии стальных образцов с покрытиями никелем, сформированными при различных режимах электролиза. Анализ полученных результатов позволяет определить диапазон плотнотей тока для каждого исследованного режима, при котором наблюдается формирование покрытий никелем хорошего качества (табл. 1).

Таблица 1 - Диапазоны допустимых плотностей тока для процесса никелирования из кислого сульфатного электролита с добавкой молочной кислоты при различных режимах электролиза
Режим электролиза Диапазон допустимых плотностей тока, А/дм2
Стационарный 0,25÷1,0
Гальваностатический импульсный 0,25÷2,0
Потенциостатический импульсный 0,1÷3,0

На фиг. 2 приведена шкала плотности тока под рисунками в А/дм2.

Фотографии стальных катодов с покрытиями никелем, сформированных при различных режимах электролиза: а) стационарный гальваностатический режим, б) импульсы тока прямоугольной формы (гальваностатический импульсный режим), в) импульсы потенциала прямоугольной формы (потенциостатический импульсный режим)

Литература

1. Ячейка Хулла. Из опыта работы заводских инженеров-технологов. // Гальванические технологии URL: http://galvanotech.ru/o_kompanii/stati/yachejka_hulla._iz_opyta_raboty_zavodskih_inzhenerov-tehnologov (дата обращения: 23.12.2021).

2. Hullcell // YAMAMOTO-MS Co., LTD. URL: https://yamamoto-ms.co.jp/en/product-cat/hullcell/ (дата обращения: 23.12.2021).

3. Hull R. O. Apparatus and process for the study of plating solutions: пат. 2149344 США. - 1939.

4. R.O. Hull, “Current Density Range Characteristics, Their Determination and Application,” Proc. Am. Electroplaters Soc., 27 (1939), pp. 52-60.

5. Nohse W. The Hull Cell //Robert Draper, Teddington, London. - 1966.

6. Madore C., Landolt D. The rotating cylinder Hull cell: design and application //Plating and surface finishing. - 1993. - Т. 80. - С. 73-73.

7. Park J. et al. Comparison between numerical simulations and experimental results on copper deposition in rotating cylinder hull cell //Electrochimica Acta. - 2015. - Т. 164. - С. 218-226.

8. Zeng T. W., Yen S. C. Effects of Gelatin on Electroplated Copper Through the Use of a Modified-Hydrodynamic Electroplating Test Cell //INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE. - 2021. - Т. 16. - №. 2.

9. Kireev S. Y. Intensification of processes of electrodeposition of metals by use of various modes of pulse electrolysis //Inorganic Materials: Applied Research. - 2017. - Т. 8. - №. 2. - С. 203-210.

Модифицированная ячейка Хулла для проведения экспресс-анализов технологических параметров, относящихся к растворам электролитов, включающая ячейку объемом 267 мл, 320 мл или 1000 мл, изготовленную из химически стойкого полимерного материала или стекла, в которой катод расположен по отношению к аноду под углом 51°, отличающаяся тем, что в конструкции ячейки кроме катода и анода предусмотрен третий электрод - электрод сравнения, капилляр от которого подведен к фронтальной поверхности рабочего электрода через отверстие в нем.



 

Похожие патенты:

Изобретение относятся к изготовлению ванн для нанесения химических покрытий, в частности ванн для щелочного оксидирования стальных деталей, которые могут быть использованы как в автооператорных, так и в механизированных или ручных линиях гальванохимической обработки. Способ включает формирование с помощью сварки в корпусе ванны внутреннего резервуара прямоугольной формы, состоящего из днища, боковых и торцевых стенок с горизонтальными бортами, и оснащение его расположенными в верхней части окнами для подключения к ванне вытяжной вентиляции, оснащение ванны трубопроводом для подачи воды и/или патрубком для слива, теплоизоляцией и электронагревательными элементами.

Изобретение относится к области гальванотехники, а именно: к способам получения композиционных электролитических покрытий. Установка содержит ванну с рабочими электродами, блоки электропитания, систему циркуляции электролита, насос и перфорированный трубопровод, при этом дно ванны выполнено в виде четырехгранного конуса и снабжено ультразвуковыми излучателями, а в качестве насоса для перекачки электролита-суспензии используется насос-гомогенизатор, при этом перфорированный трубопровод расположен над поверхностью ванны, а используемые аноды выполнены перфорированными.

Изобретение относится к области гальванотехники и может быть использовано для выполнения обработки деталей анодированием, в частности микродуговым оксидированием. Устройство содержит обрабатывающую камеру, включающую деталь для анодирования вместе с противоэлектродом, который размещен напротив обрабатываемой детали, причем обрабатываемая деталь составляет первую стенку обрабатывающей камеры, генератор, электрически соединенный с обрабатываемой деталью и с противоэлектродом, систему хранения и циркуляции электролита, включающую резервуар-хранилище электролита и контур для циркуляции электролита.

Изобретение относится к бессточной гальванохимической обработке деталей в нагреваемой процессной ванне операционного модуля. Выход насоса и/или самого устройства фильтрации процессной ванны соединяют с располагаемым в сборнике-концентраторе теплообменником с развитой поверхностью, а также с процессной ванной.

Изобретение относится к области гальванотехники и может быть использовано для нанесения гальванического покрытия из медно-никелевого сплава. Устройство содержит катодную камеру, в которой размещается деталь, анодную камеру, анод, размещенный в анодной камере, электропроводящую диафрагму, размещенную отделяющей катодную камеру и анодную камеру друг от друга, резервуар регулирования окислительно-восстановительного потенциала катодной камеры для регулирования окислительно-восстановительного потенциала электролита в катодной камере, резервуар регулирования окислительно-восстановительного потенциала анодной камеры для регулирования окислительно-восстановительного потенциала электролита в анодной камере, а также блок источника питания, который обеспечивает протекание электрического тока между деталью и анодом.

Изобретение относится к области гальванотехники и может быть использовано для перемешивания обрабатывающей среды гальванических ванн как сжатым воздухом, так и непосредственно самой обрабатывающей средой, в частности, при обработке деталей или печатных плат, размещаемых на подвесках. Способ включает перемешивание обрабатывающей среды с использованием набора полуцилиндрических профилей с подключенным к выходу напорной системы перемешивающим механизмом в виде перфорированных трубок с двухрядной перфорацией в их нижней части, которые размещают вдоль мест сочленения полуцилиндрических профилей между собой, и регулирование расхода обрабатывающей среды ванны или сжатого воздуха с использованием исполнительных механизмов, при этом набор полуцилиндрических профилей с перемешивающим механизмом выполняют в виде разъемно устанавливаемого на дно ванны моноблока, при этом разъемную установку на дно ванны моноблока производят с помощью креплений-клипс, устанавливаемых на горизонтальной части борта ванны и/или уголках, жестко соединенных с футеровкой или материалом стенок ванны, а в случае подачи в перемешивающий механизм обрабатывающей среды ванны используют размещаемый в последней заборный элемент, подключенный ко входу напорной системы.

Изобретение относится к способу и системе управления электрическим током (ЕСМ) в по меньшей мере одном электролизере, имеющем по меньшей мере два электрода, находящихся в контакте с электролитической средой, множество сенсорных средств для измерения тока, проходящего через один или более электродов, при этом указанные сенсорные средства расположены внутри по меньшей мере одной панели ЕСМ, установленной в одном или более работающих электролизерах.

Устройство относится к области гальванотехники и может быть использовано в электронном и термоэлектрическом приборостроении. Устройство содержит корпус, источник постоянного тока, кожух с закрепленным в нем анодом и электролизную ванну.

Изобретение относится к области гальванотехники и может быть использовано для гальванической, химической обработки и промывки деталей. Ванна содержит резервуар прямоугольной формы, состоящий из днища, боковых и торцевых стенок с горизонтальными бортами по периметру резервуара, одна из стенок которого в верхней части разъемно соединена со сливным карманом, снабженным сливным патрубком.

Изобретение относится к области машиностроения и может быть использовано при изготовлении ванны для гальванических производств с рабочими электролитами, имеющими нейтральную, щелочную и кислую среду, работающим при температуре от -30 до +30°С, а также к промывочным ваннам гальванопроизводства, емкостям для сброса, хранения и переработки агрессивных жидкостей и отходов.
Наверх