Способ определения температурного коэффициента скорости ультразвука
Владельцы патента RU 2786717:
Общество с ограниченной ответственностью "Инженерный центр "Качество" (RU)
Использование: для определения температурного коэффициента скорости ультразвука. Сущность изобретения заключается в том, что используют образец в виде прутка с установленными на его теле датчиками температуры и системой возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, и помещенный в нагревательную камеру и прозвучиваемый акустическим эхо-методом, при этом используют образец длиной, многократно превышающей его диаметр, прозвучивают с торца весь объем материала образца на многократных отражениях акустическим эхо-методом стержневой или крутильной волной, при этом длина волны значительно превышает диаметр образца. Технический результат: обеспечение возможности с высокой точностью определять температурный коэффициент скорости ультразвука. 2 ил.
Изобретение относится к области акустических измерений и может быть использовано для определения температурного коэффициента скорости ультразвука в твердых телах эхо методом.
Известны способы определения температурного коэффициента скорости ультразвука, заключающиеся в измерении временных интервалов между эхо-импульсами при фиксированной длине образца совместно с изменением температуры. Трудность в определении скорости ультразвука определяется малой базой прозвучивания. Существующие способы направлены на повышение точности измерений за счет измерения сдвигов фазы (SU 373610, SU 340958, SU 325511), модулирования посылок импульсов (RU 2464556, SU 599205), перестройки частоты следования импульсов (SU 1221501, SU 279209), многократного зондирования с последующим усреднением (RU 2281464), использование дополнительных звукопроводов и линий задержек (SU 735989, SU 437008, SU 1732177, SU 1742632, SU 1280520). Недостатками известных способов является нестабильность акустической картины в исследуемом образце и сложность построения измерительной системы содержащей специализированные узлы, реализующие разнообразные фазовые манипуляции сигналов.
Наиболее близким аналогом, взятым за прототип, является способ измерения скорости ультразвуковой волны [1] на длинномерном образце при котором, участвуют прутки длиной, многократно превышающей их диаметр. Прозвучивание образца производится с торца эхо методом стержневой или крутильной волной при этом ее длина многократно превышает диаметр длинномерного образца. В условиях незначительного затухания, отсутствующей или низкой дисперсии скорости, импульс отражается от противоположного торца образца и возвращается в зону излучения, затем вновь проходит по телу образца до противоположного торца и обратно. Многократные отражения при прозвучивании всего объема образца позволяют получить высокую точность определения величины скорости ультразвуковой волны [2].
Технической задачей изобретения является создание способа измерения зависимости скорости акустической волны от температуры для металлических и неметаллических образцов.
Технический результат достигается тем, что образец в виде прутка с установленными на его теле датчиками температуры и системой возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, помещается в нагревательную камеру. Так как волноводный метод позволяет прозвучивать значительные объемы материала и обеспечивает высокую точность измерения скорости акустической волны, его реализация достигается без использования специализированных устройств или узлов фазовой манипуляции сигналов.
К отличительным признакам относится то, что исследуемый образец изготавливается в виде прутка длиной, многократно превышающей его диаметр, на образец устанавливаются датчики температуры и система возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, и он помещается в нагревательную камеру, где и прозвучивается эхо-методом на многократных отражениях.
Положительный технический результат, обеспечиваемый указанной совокупностью признаков, состоит в высокой точности определения скорости ультразвуковой волны, в упрощении способа определения температурного коэффициента скорости ультразвука за счет применения оборудования без специализированных устройств или узлов фазовой манипуляции сигналов.
Результаты испытаний представляют собой зависимость скорости акустической волны от температуры. На рисунках приведены результаты измерений скорости стержневой волны на прутках из сталей марки 12Х1МФ (фиг. 1) и марки 12X18H10T (фиг. 2). Определение температурной зависимости скорости проведено на стенде с прутком диаметром 8 мм и длиной 1 м установленным в воздушной камере. На теле прутка расположены два температурных датчика. На торце прутка размещен ЭМА датчик возбуждающий и регистрирующий акустический импульс стержневой волны на рабочей частоте в 25 кГц. Возбуждение и регистрация импульсов производится в информационной системе дефектоскопа протяженных объектов «АДНШ-П» (утвержденный тип средств измерений №82936-21 (Федеральный информационный фонд по обеспечению единства измерений (gost.ru) https://fgis.gost.ru/fundmetrotogy/registry/4/items/1393410). Регистрация температуры произведена с использованием «Внешнего USB устройства для мониторинга в различных областях науки, техники и производства» (ЛА-50USB(ООО "Руднев-Шиляев". Внешнее низкостоимостное USB устройство для мониторинга в различных областях науки, техники и производства. https://rudshet.ru/show.php?dev=38). Нагрев производится феном с установленной температурой воздуха 50°С в режиме минимальной мощности. В процессе нагрева производилось прозвучивание прутка с одновременной регистрацией температуры. При прозвучивании получен эхо сигнал, содержащий 20 донных отражений. Точное время прохождения акустического импульса произведено после программной передискретизации сигналов до частоты 1 ГГц с расчетом функции корреляции между 1-м и 10-м отражением.
Источники информации
1. Патент №2688877 С1, Российская Федерация, МПК G01N 29/04. Способ определения прочностных характеристик полимерных композиционных материалов: №2018117638: заявл. 11.05.2018: опубл. 22.05.2019.
2. Акустический волноводный контроль линейно-протяженных объектов / О.В. Муравьева, В.В. Муравьев, В.А. Стрижак, С.А. Мурашов, А.В. Пряхин - Новосибирск: Издательство Сибирского отделения РАН, 2017. - 234 с. - ISBN 978-5-7692-1560-5.
Способ определения температурного коэффициента скорости ультразвука, включающий использование образца в виде прутка с установленными на его теле датчиками температуры и системой возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, и помещенного в нагревательную камеру и прозвучиваемого акустическим эхо-методом, отличающийся тем, что используют образец длиной, многократно превышающей его диаметр, прозвучивают с торца весь объем материала образца на многократных отражениях акустическим эхо-методом стержневой или крутильной волной, при этом длина волны значительно превышает диаметр образца.