Способ определения температурного коэффициента скорости ультразвука

Использование: для определения температурного коэффициента скорости ультразвука. Сущность изобретения заключается в том, что используют образец в виде прутка с установленными на его теле датчиками температуры и системой возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, и помещенный в нагревательную камеру и прозвучиваемый акустическим эхо-методом, при этом используют образец длиной, многократно превышающей его диаметр, прозвучивают с торца весь объем материала образца на многократных отражениях акустическим эхо-методом стержневой или крутильной волной, при этом длина волны значительно превышает диаметр образца. Технический результат: обеспечение возможности с высокой точностью определять температурный коэффициент скорости ультразвука. 2 ил.

 

Изобретение относится к области акустических измерений и может быть использовано для определения температурного коэффициента скорости ультразвука в твердых телах эхо методом.

Известны способы определения температурного коэффициента скорости ультразвука, заключающиеся в измерении временных интервалов между эхо-импульсами при фиксированной длине образца совместно с изменением температуры. Трудность в определении скорости ультразвука определяется малой базой прозвучивания. Существующие способы направлены на повышение точности измерений за счет измерения сдвигов фазы (SU 373610, SU 340958, SU 325511), модулирования посылок импульсов (RU 2464556, SU 599205), перестройки частоты следования импульсов (SU 1221501, SU 279209), многократного зондирования с последующим усреднением (RU 2281464), использование дополнительных звукопроводов и линий задержек (SU 735989, SU 437008, SU 1732177, SU 1742632, SU 1280520). Недостатками известных способов является нестабильность акустической картины в исследуемом образце и сложность построения измерительной системы содержащей специализированные узлы, реализующие разнообразные фазовые манипуляции сигналов.

Наиболее близким аналогом, взятым за прототип, является способ измерения скорости ультразвуковой волны [1] на длинномерном образце при котором, участвуют прутки длиной, многократно превышающей их диаметр. Прозвучивание образца производится с торца эхо методом стержневой или крутильной волной при этом ее длина многократно превышает диаметр длинномерного образца. В условиях незначительного затухания, отсутствующей или низкой дисперсии скорости, импульс отражается от противоположного торца образца и возвращается в зону излучения, затем вновь проходит по телу образца до противоположного торца и обратно. Многократные отражения при прозвучивании всего объема образца позволяют получить высокую точность определения величины скорости ультразвуковой волны [2].

Технической задачей изобретения является создание способа измерения зависимости скорости акустической волны от температуры для металлических и неметаллических образцов.

Технический результат достигается тем, что образец в виде прутка с установленными на его теле датчиками температуры и системой возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, помещается в нагревательную камеру. Так как волноводный метод позволяет прозвучивать значительные объемы материала и обеспечивает высокую точность измерения скорости акустической волны, его реализация достигается без использования специализированных устройств или узлов фазовой манипуляции сигналов.

К отличительным признакам относится то, что исследуемый образец изготавливается в виде прутка длиной, многократно превышающей его диаметр, на образец устанавливаются датчики температуры и система возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, и он помещается в нагревательную камеру, где и прозвучивается эхо-методом на многократных отражениях.

Положительный технический результат, обеспечиваемый указанной совокупностью признаков, состоит в высокой точности определения скорости ультразвуковой волны, в упрощении способа определения температурного коэффициента скорости ультразвука за счет применения оборудования без специализированных устройств или узлов фазовой манипуляции сигналов.

Результаты испытаний представляют собой зависимость скорости акустической волны от температуры. На рисунках приведены результаты измерений скорости стержневой волны на прутках из сталей марки 12Х1МФ (фиг. 1) и марки 12X18H10T (фиг. 2). Определение температурной зависимости скорости проведено на стенде с прутком диаметром 8 мм и длиной 1 м установленным в воздушной камере. На теле прутка расположены два температурных датчика. На торце прутка размещен ЭМА датчик возбуждающий и регистрирующий акустический импульс стержневой волны на рабочей частоте в 25 кГц. Возбуждение и регистрация импульсов производится в информационной системе дефектоскопа протяженных объектов «АДНШ-П» (утвержденный тип средств измерений №82936-21 (Федеральный информационный фонд по обеспечению единства измерений (gost.ru) https://fgis.gost.ru/fundmetrotogy/registry/4/items/1393410). Регистрация температуры произведена с использованием «Внешнего USB устройства для мониторинга в различных областях науки, техники и производства» (ЛА-50USB(ООО "Руднев-Шиляев". Внешнее низкостоимостное USB устройство для мониторинга в различных областях науки, техники и производства. https://rudshet.ru/show.php?dev=38). Нагрев производится феном с установленной температурой воздуха 50°С в режиме минимальной мощности. В процессе нагрева производилось прозвучивание прутка с одновременной регистрацией температуры. При прозвучивании получен эхо сигнал, содержащий 20 донных отражений. Точное время прохождения акустического импульса произведено после программной передискретизации сигналов до частоты 1 ГГц с расчетом функции корреляции между 1-м и 10-м отражением.

Источники информации

1. Патент №2688877 С1, Российская Федерация, МПК G01N 29/04. Способ определения прочностных характеристик полимерных композиционных материалов: №2018117638: заявл. 11.05.2018: опубл. 22.05.2019.

2. Акустический волноводный контроль линейно-протяженных объектов / О.В. Муравьева, В.В. Муравьев, В.А. Стрижак, С.А. Мурашов, А.В. Пряхин - Новосибирск: Издательство Сибирского отделения РАН, 2017. - 234 с. - ISBN 978-5-7692-1560-5.

Способ определения температурного коэффициента скорости ультразвука, включающий использование образца в виде прутка с установленными на его теле датчиками температуры и системой возбуждения и регистрации стержневых или крутильных волн, размещенной на его торце, и помещенного в нагревательную камеру и прозвучиваемого акустическим эхо-методом, отличающийся тем, что используют образец длиной, многократно превышающей его диаметр, прозвучивают с торца весь объем материала образца на многократных отражениях акустическим эхо-методом стержневой или крутильной волной, при этом длина волны значительно превышает диаметр образца.



 

Похожие патенты:

Изобретение относится к гидроакустике, конкретно к устройствам для измерения скорости звука в текущих жидкостях и в воде, и может быть размещено как на стационарных, так и на подвижных объектах, движущихся с большими скоростями. Схема формирования сигнала имеет функцию создания импульсного сигнала с информацией о времени подачи сигнала, который направляется на передатчик акустического сигнала.

Изобретение относится к гидроакустике, а конкретно к устройствам для измерения скорости звука в текущих жидкостях и в воде, и может быть размещено как на стационарных, так и на подвижных объектах, движущихся с большими скоростями. Технический результат, достигаемый при решении поставленной задачи, выражается в использовании раздельной схемы формирования сигнала, имеющей функцию создания импульсного сигнала с импульсного сигнала с собственной частотой заполнения и имеющего синфазную частоту огибания, при этом полученная фаза одной из частот является эквивалентом времени начала подачи сигнала и основанием для определения разности фаз между собственной частотой заполнения и частотой огибания полученного акустического импульса и соответственно для получения расчета замеренной скорости звука.

Изобретение относится к метрологии. Лабораторная установка для измерения длины звуковой волны и определения скорости звука в воздухе, содержащая звуковой генератор известной частоты с двумя выходными точками подключения, динамик с двумя входными точками подключения, микрофон с двумя выходными точками подключения, установленный с возможностью перемещения вдоль акустической оси динамика, усилитель низкой частоты с двумя входными точками подключения и двумя выходными точками подключения, вольтметр переменного тока с двумя входными точками подключения.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости распространения поверхностных акустических волн (ПАВ) в пьезоподложке. Способ измерения скорости ПАВ заключается в том, что в контролируемой пьезоподложке возбуждают ПАВ и осуществляют прием отраженного сигнала.

Заявляемое изобретение относится к области гидроакустики, в частности к способам измерения скорости звука. Способ определения распределения скорости звука заключается в перемещении автономного необитаемого подводного аппарата (АНПА) в водной среде по программной траектории, периодическом измерении скорости звука, вычислении координаты АНПА в процессе перемещения и периодической передаче на пост управления накопленной АНПА информации.

Изобретение относится к акустическим измерениям и может быть использовано, в частности, для измерения вертикального распределения скорости звука в море. Гидродинамический зонд содержит носовую часть, установленный на фиксированном расстоянии от нее акустический цилиндрический пустотелый открытый с обоих концов резонатор с клиновидной кромкой и соответствующий элемент их крепления друг к другу.

Изобретения относятся к метрологии, в частности к средствам контроля формы и размеров подземных хранилищ газа. Звуколокатор содержит узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей.

Использование: для определения и контроля скоростей поверхностных и продольных акустических волн в материалах при квазистатических и циклических нагрузках. Сущность изобретения заключается в том, что устройство для определения и контроля скоростей поверхностных и продольных акустических волн в материалах при квазистатических и циклических нагрузках содержит импульсно-модулированный лазер, соединенный через оптоволокно с оптико-акустическим преобразователем, а также пьезоприемник, соединенный с аналого-цифровым преобразователем, подключенным к компьютеру, причем контролируемый объект расположен между оптико-акустическим преобразователем и пьезоприемником, при этом устройство дополнительно содержит второй пьезоприемник, который выполнен в виде плоского кольца, совмещенного осесимметрично с оптико-акустическим преобразователем, и соединен с аналого-цифровым преобразователем.

Изобретение относится к акустике. Способ измерения скорости распространения головной ультразвуковой волны предполагает возбуждение и прием прошедших по изделию ультразвуковых импульсов, оцифровку импульсов, запись в компьютер и определение временных интервалов между этими импульсами.

Изобретение относится к метрологии, в частности к способам измерения скорости звука. Способ измерения распределения скорости звука в жидких средах заключается в том, что расположенным на заданном горизонте среды источником звуковых колебаний излучают акустические сигналы и поочередно принимают акустическими приемниками сигналы, отраженные от акустических рассеивателей, находящихся в объемах жидкой среды, которые ограничены пересечением характеристики направленности источника с веером характеристик направленности приемников.
Наркология
Наверх