Арсенид-галлиевый входной дифференциальный каскад класса ав быстродействующего операционного усилителя

Изобретение относится к области радиоэлектроники и может быть использовано в качестве входного каскада быстродействующих арсенид-галлиевых операционных усилителей. Технический результат: создание входного дифференциального каскада ОУ, реализуемого на JFET арсенид-галлиевых полевых транзисторах с управляющим p-n-переходом и биполярных GaAs p-n-p-транзисторах, который обеспечивает по токовым выходам режим класса АВ, когда максимальные выходные токи ДК Iвых.max существенно превышают их статические значения Iвых.0. Это ускоряет процесс перезарядки емкости корректирующего конденсатора ОУ и повышает быстродействие ОУ в режиме большого сигнала. Арсенид-галлиевый входной дифференциальный каскад класса АВ быстродействующего операционного усилителя содержит входной дифференциальный каскад (1) с первым (2) и вторым (3) входами, а также с первым (4) и вторым (5) токовыми выходами, первую (6) шину источника питания, первый (7) и второй (8) выходные биполярные p-n-p-транзисторы, коллекторы которых связаны с соответствующими первым (9) и вторым (10) токовыми выходами устройства, согласованными с первой (6) шиной источника питания, первый (11) и второй (12) токостабилизирующие биполярные p-n-p-транзисторы с объединенными базами, эмиттеры которых соединены со второй (13) шиной источника питания, коллектор первого (11) токостабилизирующего биполярного p-n-p-транзистора соединен с первым (4) токовым выходом входного дифференциального каскада (1), коллектор второго (12) токостабилизирующего биполярного p-n-p-транзистора связан со вторым (5) токовым выходом входного дифференциального каскада (1). В схему введены первый (14) и второй (15) дополнительные полевые транзисторы с управляющим p-n-переходом и n-каналом, стоки которых согласованы со второй (13) шиной источника питания, между их истоками включены два последовательно соединенных дополнительных резистора (16) и (17), общий узел которых подключен к объединенным базам первого (11) и второго (12) токостабилизирующих биполярных p-n-p-транзисторов, затвор первого (14) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом соединен с коллектором первого (11) токостабилизирующего биполярного p-n-p-транзистора и базой второго (8) выходного биполярного p-n-p-транзистора, затвор второго (15) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом соединен с коллектором второго (12) токостабилизирующего биполярного p-n-p-транзистора и базой первого (7) выходного биполярного p-n-p-транзистора, эмиттер первого (7) выходного биполярного p-n-p-транзистора соединен с истоком первого (14) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом, а эмиттер второго (8) выходного биполярного p-n-p-транзистора соединен с истоком второго (15) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом. 2 з.п. ф-лы, 7 ил.

 

Изобретение относится к области радиоэлектроники и может быть использовано в качестве входного каскада быстродействующих арсенид-галлиевых операционных усилителей.

В современной радиоэлектронной аппаратуре находят применение операционные усилители (ОУ) с входным дифференциальным каскадом на полевых и биполярных транзисторах, выполненные на основе архитектуры так называемого «перегнутого каскода» [1-45]. Их основные достоинства - расширенный частотный диапазон, а также эффективное использование напряжения питания.

В настоящее время в российской и зарубежной микроэлектронике уделяется повышенное внимание арсенид-галлиевым микросхемам [46]. Данное направление создания электронной компонентной базы относится к числу наиболее перспективных в задачах космического приборостроения. Однако, особенности арсенид-галлиевых технологических процессов накладывают существенные ограничения на типы реализуемых транзисторов и их характеристики [47,48]. Так, например, арсенид-галлиевый технологический процесс, освоенный Минским научно-исследовательским институтом радиоматериалов (https://mniirm.by/), ориентирован на изготовление аналоговых схем, содержащих только полевые GaAs транзисторы с управляющим p-n переходом (n-канал) и биполярные GaAs p-n-p транзисторы. Применение других полупроводниковых приборов не допускается. Это накладывает существенные ограничения на схемотехнику аналоговых устройств, ориентированных на данный технологический процесс.

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный каскад по патенту US 6.529.076, 2003 г. Он содержит (фиг. 1) входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, а также с первым 4 и вторым 5 токовыми выходами, первую 6 шину источника питания, первый 7 и второй 8 выходные биполярные p-n-p транзисторы, коллекторы которых связаны с соответствующими первым 9 и вторым 10 токовыми выходами устройства, согласованными с первой 6 шиной источника питания, первый 11 и второй 12 токостабилизирующие биполярные p-n-p транзисторы с объединенными базами, эмиттеры которых соединены со второй 13 шиной источника питания, коллектор первого 11 токостабилизирующего биполярного p-n-p транзистора соединен с первым 4 токовым выходом входного дифференциального каскада 1, коллектор второго 12 токостабилизирующего биполярного p-n-p транзистора связан со вторым 5 токовым выходом входного дифференциального каскада 1.

Существенный недостаток дифференциального каскада - прототипа (фиг. 1) состоит в том, что при его реализации на JFET GaAs полевых транзисторах с n-каналом и p-n-p GaAs биполярных транзисторах, он не работает в режиме класса АВ. Это не позволяет выполнять на его основе схемы быстродействующих операционных усилителей, в которых эффект повышения SR достигается за счет применения ДК класса АВ.

Основная задача предполагаемого изобретения состоит в создании входного дифференциального каскада ОУ, реализуемого на JFET арсенид-галлиевых полевых транзисторах с управляющим p-n переходом и биполярных GaAs p-n-p транзисторах, который обеспечивает по токовым выходам режим класса АВ, когда максимальные выходные токи ДК Iвых.max существенно превышают их статические значения Iвых.0. Это ускоряет процесс перезарядки емкости корректирующего конденсатора ОУ и повышает быстродействие ОУ в режиме большого сигнала.

Поставленная задача достигается тем, что в дифференциальном каскаде фиг. 1, содержащем входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, а также с первым 4 и вторым 5 токовыми выходами, первую 6 шину источника питания, первый 7 и второй 8 выходные биполярные p-n-p транзисторы, коллекторы которых связаны с соответствующими первым 9 и вторым 10 токовыми выходами устройства, согласованными с первой 6 шиной источника питания, первый 11 и второй 12 токостабилизирующие биполярные p-n-p транзисторы с объединенными базами, эмиттеры которых соединены со второй 13 шиной источника питания, коллектор первого 11 токостабилизирующего биполярного p-n-p транзистора соединен с первым 4 токовым выходом входного дифференциального каскада 1, коллектор второго 12 токостабилизирующего биполярного p-n-p транзистора связан со вторым 5 токовым выходом входного дифференциального каскада 1, предусмотрены новые элементы и связи - в схему введены первый 14 и второй 15 дополнительные полевые транзисторы с управляющим p-n переходом и n-каналом, стоки которых согласованы со второй 13 шиной источника питания, между их истоками включены два последовательно соединенных дополнительных резистора 16 и 17, общий узел которых подключен к объединенным базам первого 11 и второго 12 токостабилизирующих биполярных p-n-p транзисторов, затвор первого 14 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом соединен с коллектором первого 11 токостабилизирующего биполярного p-n-p транзистора и базой второго 8 выходного биполярного p-n-p транзистора, затвор второго 15 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом соединен с коллектором второго 12 токостабилизирующего биполярного p-n-p транзистора и базой первого 7 выходного биполярного p-n-p транзистора, эмиттер первого 7 выходного биполярного p-n-p транзистора соединен с истоком первого 14 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом, а эмиттер второго 8 выходного биполярного p-n-p транзистора соединен с истоком второго 15 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом.

На чертеже фиг. 1 приведена схема входного дифференциального каскада - прототипа по патенту US 6.529.076, 2003 г.

На чертеже фиг. 2 показана схема заявляемого дифференциального каскада класса АВ в соответствии с п. 1, п. 2 и п. 3 формулы изобретения.

На чертеже фиг. 3 приведен пример включения заявляемого ДК в структуре быстродействующего ОУ.

На чертеже фиг. 4 представлен статический режим ДК фиг. 2 на GaAs JFET и BJT транзисторах Минского НИИ радиоматериалов в среде LTSpice при 27°С, источнике опорного тока I1=200мкА, резисторах R1=R2=20кОм, Rn1=Rn2=1Ом, напряжениях питания V1=V2=±5В.

На чертеже фиг. 5 показана зависимость выходных токов ДК фиг. 4 от входного дифференциального напряжения в диапазоне от -600мВ до 600мВ.

На чертеже фиг. 6 приведен статический режим предлагаемого входного дифференциального каскада класса АВ в структуре бвыстродействующего операционного усилителя на GaAs транзисторах при R1÷R2 = 20 кОм, R3÷R4 = 2 кОм, C1=5 нФ, C2 = 8 пФ, vcc= +10 В, vee = -10 В.

На чертеже фиг. 7 представлены результаты моделирования амплитудно-частотной характеристики коэффициента усиления ОУ фиг. 6 в среде LTspice на моделях GaAs транзисторов Минского НИИ радиоматериалов.

Арсенид-галлиевый входной дифференциальный каскад класса АВ быстродействующего операционного усилителя фиг. 2 содержит входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, а также с первым 4 и вторым 5 токовыми выходами, первую 6 шину источника питания, первый 7 и второй 8 выходные биполярные p-n-p транзисторы, коллекторы которых связаны с соответствующими первым 9 и вторым 10 токовыми выходами устройства, согласованными с первой 6 шиной источника питания, первый 11 и второй 12 токостабилизирующие биполярные p-n-p транзисторы с объединенными базами, эмиттеры которых соединены со второй 13 шиной источника питания, коллектор первого 11 токостабилизирующего биполярного p-n-p транзистора соединен с первым 4 токовым выходом входного дифференциального каскада 1, коллектор второго 12 токостабилизирующего биполярного p-n-p транзистора связан со вторым 5 токовым выходом входного дифференциального каскада 1. В схему введены первый 14 и второй 15 дополнительные полевые транзисторы с управляющим p-n переходом и n-каналом, стоки которых согласованы со второй 13 шиной источника питания, между их истоками включены два последовательно соединенных дополнительных резистора 16 и 17, общий узел которых подключен к объединенным базам первого 11 и второго 12 токостабилизирующих биполярных p-n-p транзисторов, затвор первого 14 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом соединен с коллектором первого 11 токостабилизирующего биполярного p-n-p транзистора и базой второго 8 выходного биполярного p-n-p транзистора, затвор второго 15 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом соединен с коллектором второго 12 токостабилизирующего биполярного p-n-p транзистора и базой первого 7 выходного биполярного p-n-p транзистора, эмиттер первого 7 выходного биполярного p-n-p транзистора соединен с истоком первого 14 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом, а эмиттер второго 8 выходного биполярного p-n-p транзистора соединен с истоком второго 15 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом.

На чертеже фиг. 2, в соответствии с п. 2 формулы изобретения, входной дифференциальный каскад 1 выполнен на основе первого 18 и второго 19 входных полевых транзисторах с управляющим p-n переходом и n-каналом, объединенные истоки которых связаны с первой 6 шиной источника питания через источник опорного тока 20.

Кроме этого, на чертеже фиг. 2, в соответствии с п. 3 формулы изобретения, сток первого 14 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом соединен с первым 21 дополнительным токовым выходом устройства, а сток второго 15 дополнительного полевого транзистора с управляющим p-n переходом и n-каналом соединен со вторым 22 дополнительным токовым выходом устройства.

Проходная характеристика предлагаемого ДК фиг. 4, представленная на графиках фиг. 5, показывает, что рассматриваемая схема работает в режиме класса АВ - ее максимальным выходной ток Iвых.max значительно превышает статические выходные токи Iвых.0, причем отношение

где Iвых.max = 2,8 мА, Iвых.0 = 30 мкА.

Таким образом, предлагаемый входной GaAs ДК, схемотехника которого адаптирована на применение в широком диапазоне температур и воздействия проникающей радиации [46], имеет существенные достоинства в сравнении с известным вариантом построения ДК фиг. 1 при его реализации в рамках рассматриваемого арсенид-галлиевого технологического процесса, обеспечивающего создание только полевых транзисторов с управляющим p-n переходом и биполярных p-n-p транзисторов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент RU 2321159, 2008 г., fig. 3, fig. 5

2. Патент US 5.153.529, 1992 г., fig. 1

3. Патент US 5.327.100, 1994 г., fig. 1

4. Патент US 6.529.076, 2003 г., fig. 1

5. Патент US 5.805.021, 1998 г., fig. 1

6. Патент US 5.140.280, 1992 г., fig. 1

7. Патент US 3.644.838, 1972 г.

8. Патент US 6.018.268, 2000 г., fig. 1

9. Патент US 7.714.656, 2010 г., fig. 3

10. Патент US 6.717.474, 2004 г.

11. Патент США № 5.422.600, фиг. 2

12. Патент США № 4.406.990, фиг. 4

13. Патент США № 5.952.882, 1999 г.

14. Патент США № 4.723.111, 1988 г.

15. Патент США № 4.293.824, 1981 г.

16. Патент США № 5.323.121, 1994 г.

17. Патент США № 5.420.540, fig. 1, 1995 г.

18. Патент RU № 2354041 C1, 2009 г.

19. Патентная заявка США № 2003/0201828, fig. 1, fig. 2, 2003 г.

20. Патент США № 6.825.721, fig. 1, fig. 2, 2004 г.

21. Патент США № 6.542.030, fig. 1, 2003 г.

22. Патент US 6.456.162, fig. 2, 2002 г.

23. Патент US 6.501.333, 2002 г.

24. Патент US 6.717.466, 2004 г.

25. Патентная заявка US № 2002/0196079, fig. 1, 2002 г.

26. Патент US № 4.600.893, fig. 7, 1986 г.

27. Патент US № 4.004.245, 1977 г.

28. Патент US № 7.411.451, fig. 5, 2008 г.

29. Патент US № 6.788.143, 2004 г.

30. Патент US 4.387.309, 1983 г.

31. Патент US 4.390.850, 1983 г.

32. Патент US 5.963.085, 1999 г.

33. Патент US 4.783.637, 1988 г.

34. Патент GB 2.035.003, fig. 2, 1980 г.

35. Патент US 7.215.200, fig. 6, 2007 г.

36. Патент US 6.393.495, 2002 г.

37. Патент US 6.628.168, fig. 2, 2003 г. (в ОУ)

38. Патент US 8.604.878, fig. 2, 2013 г. (в ОУ)

39. Патент US 7.453.319, fig. 1, 2008 г.

40. Патент EP 0632581, fig. 1, fig. 3, 1995 г.

41. Заявка на патент US 2009/0079503, fig. 1а, 2009 г.

42. Патент US 5.376.899, fig. 1, 1994 г.

43. Заявка на патент US 2008/0129383, fig. 1, 2008 г.

44. Патент US 5.424.681, fig. 1, 1995 г.

45. Патент US 5.475.339, 1995 г.

46. Дворников О.В., Павлючик А.А., Прокопенко Н.Н., Чеховский В.А., Кунц А.В., Чумаков В.Е. Арсенид-галлиевый аналоговый базовый кристалл // Проблемы разработки перспективных микро- и наноэлектронных систем (МЭС). 2021. Выпуск 2. С. 47-54. doi:10.31114/2078-7707-2021-2-47-54

47. W. Liu, D. Hill, D. Costa and J. S. Harris, "High-performance microwave AlGaAs-InGaAs Pnp HBT with high-DC current gain," in IEEE Microwave and Guided Wave Letters, vol. 2, no. 8, pp. 331-333, Aug. 1992, doi: 10.1109/75.153604.

48. K. W. Kobayashi, D. K. Umemoto, J. R. Velebir, D. C. Streit and A. K. Oki, "Integrated complementary HBT microwave push-pull and Darlington amplifiers with PNP active loads," GaAs IC Symposium Technical Digest 1992, 1992, pp. 313-316, doi: 10.1109/GAAS.1992.247281.

1. Арсенид-галлиевый входной дифференциальный каскад класса АВ быстродействующего операционного усилителя, содержащий входной дифференциальный каскад (1) с первым (2) и вторым (3) входами, а также с первым (4) и вторым (5) токовыми выходами, первую (6) шину источника питания, первый (7) и второй (8) выходные биполярные p-n-p-транзисторы, коллекторы которых связаны с соответствующими первым (9) и вторым (10) токовыми выходами устройства, согласованными с первой (6) шиной источника питания, первый (11) и второй (12) токостабилизирующие биполярные p-n-p-транзисторы с объединенными базами, эмиттеры которых соединены со второй (13) шиной источника питания, коллектор первого (11) токостабилизирующего биполярного p-n-p-транзистора соединен с первым (4) токовым выходом входного дифференциального каскада (1), коллектор второго (12) токостабилизирующего биполярного p-n-p-транзистора связан со вторым (5) токовым выходом входного дифференциального каскада (1), отличающийся тем, что в схему введены первый (14) и второй (15) дополнительные полевые транзисторы с управляющим p-n-переходом и n-каналом, стоки которых согласованы со второй (13) шиной источника питания, между их истоками включены два последовательно соединенных дополнительных резистора (16) и (17), общий узел которых подключен к объединенным базам первого (11) и второго (12) токостабилизирующих биполярных p-n-p-транзисторов, затвор первого (14) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом соединен с коллектором первого (11) токостабилизирующего биполярного p-n-p-транзистора и базой второго (8) выходного биполярного p-n-p-транзистора, затвор второго (15) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом соединен с коллектором второго (12) токостабилизирующего биполярного p-n-p-транзистора и базой первого (7) выходного биполярного p-n-p-транзистора, эмиттер первого (7) выходного биполярного p-n-p-транзистора соединен с истоком первого (14) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом, а эмиттер второго (8) выходного биполярного p-n-p-транзистора соединен с истоком второго (15) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом.

2. Арсенид-галлиевый входной дифференциальный каскад класса АВ быстродействующего операционного усилителя по п.1, отличающийся тем, что входной дифференциальный каскад (1) выполнен на основе первого (18) и второго (19) входных полевых транзисторах с управляющим p-n-переходом и n-каналом, объединенные истоки которых связаны с первой (6) шиной источника питания через источник опорного тока (20).

3. Арсенид-галлиевый входной дифференциальный каскад класса АВ быстродействующего операционного усилителя по п.1, отличающийся тем, что сток первого (14) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом соединен с первым (21) дополнительным токовым выходом, а сток второго (15) дополнительного полевого транзистора с управляющим p-n-переходом и n-каналом соединен со вторым (22) дополнительным токовым выходом.



 

Похожие патенты:

Изобретение относится к области радиотехники. Технический результат: повышение крутизны преобразования входного дифференциального напряжения в выходные дифференциальные токи устройства, повышение коэффициента усиления по напряжению.

Изобретение относится к области радиотехники и может быть использовано в структуре различных аналоговых интерфейсов на базе операционных усилителей (ОУ). Техническим результатом изобретения является повышение максимальной скорости нарастания выходного напряжения (SR) ОУ и драйверов АЦП на их основе.

Изобретение относится к области радиотехники и может быть использовано в структуре различных аналоговых интерфейсов на базе операционных усилителей (ОУ). Техническим результатом изобретения является повышение максимальной скорости нарастания выходного напряжения (SR) ОУ и драйверов АЦП на их основе.

Изобретение относится к области радиотехники и связи и может быть использовано в структуре аналоговых микросхем различного функционального назначения, например операционных усилителях (ОУ), компенсационных стабилизаторах напряжения, компараторах и т.п. Техническим результатом изобретения является обеспечение работы дифференциального каскада (ДК) в режиме класса АВ при повышенных отношениях его максимальных выходных токов Iвых.max на первом 12 и втором 13 токовых выходах к статическим значениям его выходных токов Iвых.0, которые определяются при нулевом входном напряжении ДК.

Изобретение относится к области радиотехники и связи и может быть использовано в структуре аналоговых микросхем различного функционального назначения, например операционных усилителях (ОУ), компенсационных стабилизаторах напряжения, компараторах и т.п. Техническим результатом изобретения является обеспечение работы дифференциального каскада (ДК) в режиме класса АВ при повышенных отношениях его максимальных выходных токов Iвых.max на первом 12 и втором 13 токовых выходах к статическим значениям его выходных токов Iвых.0, которые определяются при нулевом входном напряжении ДК.

Изобретение относится к области радиотехники и микроэлектроники. Технический результат: повышение предельных значений SR без ухудшения энергетических параметров ОУ в статическом режиме, а также без использования дорогостоящих СВЧ технологических процессов его изготовления.

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в структуре аналого-цифровых интерфейсов и IP-модулей систем связи и телекоммуникаций, допускающих работу в условиях воздействия проникающей радиации, низких или высоких температур. Технический результат: создание операционного усилителя с «перегнутым» каскодом, реализуемого на JFET арсенид-галлиевых полевых транзисторах с управляющим р-n переходом и биполярных GaAs р-n-р транзисторах, имеющего малые значения систематической составляющей напряжения смещения нуля.

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в различных аналоговых интерфейсах, например драйверах АЦП на основе быстродействующих операционных усилителей (ОУ). Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения ОУ при малом статическом токе, потребляемом ОУ от источника питания.

Изобретение относится к области микроэлектроники. Технический результат: создание двухтактного буферного усилителя, реализуемого на JFET арсенид-галлиевых полевых транзисторах с управляющим p-n-переходом и биполярных GaAs p-n-p транзисторах, который имеет малый статический ток потребления и обеспечивает стабильность основных параметров в диапазоне внешних воздействий.

Изобретение может быть использовано в качестве выходного каскада операционных усилителей. Технический результат: обеспечение коэффициента передачи по напряжению, близкого к единице, малого статического тока потребления, а также обеспечение в относительно низкоомной нагрузке токов двух направлений.
Наверх