Способ получения оксидного катализатора для дегидрирования органических веществ

Настоящее изобретение относится к производству катализатора для процессов в нефтяной и химической промышленностях. Способ получения медь-цинк-алюминиевого оксидного катализатора для дегидрирования циклогексанола в циклогексанон, включает осаждение на предварительно осажденный ZnAl стабилизатор азотнокислых солей меди, цинка и алюминия из растворов нитратов меди, цинка и алюминия раствором карбоната натрия при заданных температуре и pH, с последующим выделением осадка, отмывку, сушку, прокаливание. Осаждение предварительно нагретого до 65°С раствора нитратов цинка и алюминия производят нагретым до 65°С раствором 10 мас.% раствором карбоната натрия при постоянном перемешивании при 65°С, с последующей выдержкой, фильтрованием и промывкой полученного осадка водой с температурой 45°С, с дальнейшим введением полученного стабилизатора в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании, осаждение полученной суспензии предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры, выдержкой при постоянном перемешивании и температуре в течение 1 часа, фильтрованием, промывкой осадка, сушкой при температуре 90-120°С и прокаливанием при температуре 300°С. Технический результат заключается в повышении качества промывки катализатора при уменьшенном расходе воды, что приводит к увеличению площади удельной поверхности катализатора на более чем 10%, относительно коммерческих аналогов, при сохранении высокой активности и термостабильности полученного катализатора. 1 ил., 1 табл.

 

Настоящее изобретение относится к производству катализатора и может быть использован в нефтяной и химической промышленностях.

Известен способ получения катализатора дегидрирования циклогексанола представляющий собой смесь оксидов меди, цинка и алюминия в различных соотношениях с оксидом натрия в качестве промотирующей добавки (Патент РФ № 2101083, B01J23/80, опубл. 10.01.1998). Сущность изобретения: катализатор для процесса дегидрировании циклогексанола в циклогексанон на основе медь-цинк-алюминия и/или хромоксидной системы, промотированной щелочными металлами, получают путем соосаждения из растворов солей раствором карбоната щелочного металла с последующей термообработкой. Щелочной металл вводят в катализатор на стадии осаждения путем неполной отмывки осадка от иона щелочного металла. Недостатками данного метода являются:

а) ввод добавки щелочного металла осуществляется методом неполной отмывки, что приводит к сложности контроля количества промотирующей добавки. Данный факт приводит снижению технологичности процесса и понижению качества получаемого продукта;

б) отсутствует регламент отстаивания суспензии в процессе синтеза, что приводит невоспроизводимому процессу старения осадка, что приводит к непостоянству фазового состава полученного катализатора;

в) Сливание маточного раствора приводит потери мелкой фракции продукта, которая находится в виде взвеси в маточном растворе, что приводит к увеличению себестоимости итогового катализатора;

г) отсутствие стабилизатора в процессе осаждения приводит к низкой термической стабильности итогового катализатора.

Известен способ получения катализатора синтеза метанола представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях (Патент РФ 2100069, опубл. 27.12.1997, B01J23/80). В данном патенте предлагается способ получения катализатора путем осаждения азотнокислых солей меди, цинка и алюминия карбонатом натрия при 50-80°C, pH равном 6,0-8,0 и времени осаждения от 3 до 60 мин. Осаждение медь-цинкового или медь-цинк-алюминиевого соединения проводят на предварительно осажденный цинк-алюминиевый стабилизатор. Кроме того, осаждение проводят при непрерывной подаче растворов в реакторную систему, состоящую из одного или нескольких реакторов, и непрерывном отводе суспензии из системы, причем среднее врем пребывания медь-цинк-алюминиевого соединения в реакционной зоне составляет не более 60 мин. Предлагаемый непрерывный способ приготовления катализатора позволяет получать высокоактивный и термостабильный катализатор.

Недостатками данного способа являются:

а) сливание холодных растворов нитратов меди, цинка и алюминия и карбоната натрия в реакторе с поддержанием заданной температуры (50-80°С), что приводит к формированию большого количества локальных областей перегрева и переохлаждения раствора. Данный факт приводит к плохой воспроизводимости фазового состава итогового катализатора;

б) промывка суспензии осуществляется холодной водой, что снижает эффективность промывки за счет более низкой растворимости нитрата натрия, образующегося в ходе синтеза, в холодной воде.

Из источника (патент SU №1524920 B01J 37/04, 1987 г.) известен способ получения катализатора для процесса конверсии СО, представляющего собой смесь оксидов меди, цинка и алюминия в различном соотношении. Данный катализатор получают синтезируют путем смешивания оксида или гидроксида алюминия, оксида цинка и аммиачно-карбонатным комплексом меди. Далее образец подвергают сушке, прокаливанию катализаторной массы и формованием. Оксид алюминия перед смешиванием диспергируют в водном растворе NH3 до образования гидроксида алюминия, затем смешивают с другими компонентами и добавляют молибдат аммония. Полученную смесь диспергируют до полного удаления аммиака, 5-15 мас. % полученной каталитической массы перемешивают с водным раствором ПВС и порошком, полученным прокаливанием остального количества каталитической массы. Основным недостатком данного метода является низкая активность полученного катализатора.

Из источника (патент РФ 2281162, B01J23/80, опубл. 10.08.2006 г.) известен способ получения катализатора конверсии оксида углерода, представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях. Данный катализатор получают путем смешения аммиачно-карбонатного комплекса меди (МАКР), аммиачно-карбонатного комплекса цинка (ЦАКР) и оксида или гидроксида алюминия в реакторе с мешалкой и обогревом. Полученную суспензию нагревают до 40-50°С и выдерживают при заданной температуре 1-2 часа. Затем увеличивают температуру смеси до 85-97°С и подают продувочный газ (азот или углекислоту). Полученный осадок отделяют, сушат при температуре 90-110°С и прокалдивают при температуре 270-400°С. Полученную прокаленную массу гранулируют и таблетируют с добавлением стабилизатора (хромовая, азотная, щавелевая кислоты или карбамид) и графита (1-1,5 мас.%.)

Недостатками данного метода являются:

а) использования токсичных реагентов (азотная и хромовая кислоты, аммиачно-карбонатные комплексы цинка и меди);

б) нагревание уже смеси непосредственно в реакторе, что приводит к формированию локальных перегревов у стенок реактора, что влечет формирование неоднородного фазового состава катализатора.

Из источника (патент РФ 2491119, B01J 23/80, опубл. 27.08.2013 г.) известен способ получения катализатора конверсии водяного газа низкой температуры, представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях. Данный катализатор получают путем получение дисперсии оксида алюминия со структурами бимита/спевдобимита с помощью пептизации оксида алюминия в кислотном растворе при рН 2-5 (предпочтительно 3). Полученную суспензию добавляют к раствору, содержащему соли цинка и меди (нитраты, ацетаты или их комбинации) при перемешивании в течение 30-60 мин при рН=3. Образовавшуюся суспензию смешивают с раствором карбоната щелочного металла с поддержанием температуры 35-90°С при поддержке рН=7. После сливания смесь выдерживают при температуре 35-90°С в течение 15-180 минут поддерживая рН в интервале 7-9. Полученный осадок фильтруют, промывают, и сушат при 80°С. Далее осадок вымывают так, чтобы уровень оксида натри в образце бел нижу 0,2 мас.%. Высушенный порошок может быть кальцинирован при 200-600°С в течение 30-300 минут.

Недостатками данного метода являются:

а) широкий интервал температур (35-90°С) при выдержке взвеси катализатора приводит к формированию неоднородного фазового состава полученного катализатора, что негативно влияет на его активность и селективность.

б) вымывание порошка катализатора проводят без подогревания промывной воды, что снижает эффективность промывки и повышает расход воды.

в) отсутствие графита (или др. прессовочной добавки, например талюма) в составе конечного катализатора приводит к менее технологичному формованию конечного катализатора.

Максимально близким (прототип) по технологическому результату является катализатор для синтеза метанола и конверсии монооксида углерода, представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях, описанный в источнике (патент RU 2500470, B01J 37/03, опубл. 10.12.2013). Данный катализатор получают путем предварительного осаджения нитратов меди, цинка и алюминия раствором карбоната щелочного металла при рН 5-6. Далее полученную суспензию вносят в реактор с добавлением растворов нитратов меди, цинка и алюминия и раствора щелочного металла с температурой в реакционной зоне равной 50-80°С. Скорость подачи реагентов выбирают таким образом, чтобы поддерживать определенную величину рН=6-8. Время пребывания суспензии в реакционной зоне составляет 30-120 минут. Далее суспензию катализаторной массы фильтруют, отмывают водой, сушат при температуре 90-130°С и прокаливают при температуре 150-300°С. далее в прокаленную массу добавляют укрепляющие добавки: талюм и/или графит. Полученный катализатор формуют методом таблетирования. Данный способ позволяет получать активный и термостабильный катализатор.

Недостатками данного метода является:

а) большой интервал температур в реакционной зоне, что приводит к формированию неоднородного фазового состава катализаторной массы;

б) отмывание катализатора холодной водой снижает эффективность отмывки, что приводит к большему расходу воды;

в) отсутствие оперативного контроля качества промывки катализатора.

Задачей изобретения является оптимизация методики синтеза катализаторов дегидрирования циклогексанола, представляющих собой смесь оксидов меди, цинка и алюминия, с сохранением их активности и термической стабильности.

Технический результат заключается в повышении качества промывки катализатора при уменьшенном расходе воды, что приводит к увеличению площади удельной поверхности катализатора на более чем 10%, относительно коммерческих аналогов, при сохранении высокой активности и термостабильности полученного катализатора.

Технический результат достигается путем приготовления цинк-алюминиевого стабилизатора путем осаждения предварительно нагретого до 65°С раствора нитратов цинка и алюминия нагретым до 65°С раствором 10 мас.% раствором осадителя (карбонат натрия) при постоянном перемешивании и температуре 65°С. Скорость подачи реагентов выбирают таким образом, чтобы поддерживать рН в реакционной среде около 7. Выдерживают полученную суспензию в данных условиях в течении в течение 30 минут. Далее полученный осадок фильтруют и промывают дистиллированной водой с температурой 45°С. Полученную на данном этапе пасту вносят в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании. Далее производят осаждение полученной суспензии предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры. Скорости подачи реагентов выбирают таким образом, чтобы обеспечить постоянный рН в реакционной среде равный 7. Полученную суспензию выдерживают при постоянном перемешивании и температуре в течение 1 часа. Образовавшийся осадок фильтруют и промывают предварительно нагретой до 40-45°С водой с постоянным контролем электропроводности смывных вод. При достижении электропроводности смывных вод промывку останавливают. Полученную промытую массу сушат при температуре 90-120°С и прокаливают при температуре 300-500°С.

Сопоставительный анализ прототипа и заявленного способа приготовления катализатора показывает, что является осаждение на предварительно осадженный стабилизатор нитратов меди, цинка и алюминия раствором карбоната натрия при заданных температуре и рН с последующими выделением, промывкой, сушкой и прокалкой катализатора.

Отличительными чертами являются использование предварительно нагретых растворов нитратов металлов и карбоната натрия, использование предварительно нагретой до 40-45°С воды для промывания катализатора, использование контроля электропроводности промывочных вод для проверки качества промывки в процессе синтеза катализаторов.

Предлагаемый способ приготовления осуществляется следующим образом: предварительно отмеренные навески нитратов цинка и алюминия (масса нитрата цинка равна 5-6% от общей массы нитрата цинка, необходимого для синтеза катализатора, масса нитрата алюминия равна 55-56 от общей массы нитрата алюминия, необходимого для синтеза катализатора) растворяют в подогретой до 65°С дистиллированной воде в термостойком химическом стакане или другой химически и термически стойкой ёмкости подходящего объема при постоянном перемешивании. Во втором термостойком химическом стакане или другой химически и термически стойкой ёмкости подходящего объема растворяют карбонат натрия, концентрация полученного раствора должна составлять 10 мас.%. Полученный раствор нагревают до 65°С. Далее растворы нитратов цинка, алюминия и карбоната натрия сливают при постоянном перемешивании и температуре 65°С в термостойком химическом стакане или другой химически и термически стойкой ёмкости подходящего объема. Скорости подачи реагентов подбирают таким образом, чтобы рН среды после сливания растворов нитратов металлов и карбоната натрия был равен 7. Полученный твердый осадок промывают подогретой до 45°С водой и фильтруют. Полученную на данном этапе пасту вносят в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании и поддержании температуры 65°С. Далее производят сливание полученной суспензии с предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры. Скорости подачи реагентов выбирают таким образом, чтобы обеспечить постоянный рН в реакционной среде равный 7. Полученную суспензию выдерживают при постоянном перемешивании и температуре в течение 1 часа. Образовавшийся осадок фильтруют и промывают предварительно нагретой до 40-45°С водой с постоянным контролем электропроводности смывных вод. При достижении электропроводности смывных вод постоянного значения промывку останавливают. Полученную промытую массу сушат при температуре 90-120°С и прокаливают при температуре 300°С.

В таблице 1 представлен Химический состав и текстурные характеристики Cu-Zn-Al - катализаторов дегидрирования циклогексанола

Таблица - Химический состав и текстурные характеристики Cu-Zn-Al - катализаторов дегидрирования циклогексанола

Образец Состав, мас.% Удельная поверхность, м2 Объем пор, см3 Размер пор, нм
CuO ZnO Al2O3 Me2O
CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,2 0,69 0,11 - 134 0.75 20.0
Li2O(0.005)-CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,198 0,688 0,108 Li2O 0.005 64 0.48 28.1
Na2O(0.005)-CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,198 0,688 0,108 Na2O 0.005 81 0.65 29.2
K2O(0.005)-CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,198 0,688 0,108 K2O 0.005 102 0.79 28.4
CuO(0.45)-ZnO(0.44)-Al2O3(0.11) 0,45 0,44 0,11 - 110 0,64 20,3
Образец сравнения 1 0,20 - SiO2 0,76 Na2O 0,014 127 0,73 19,0

Согласно полученным экспериментальным данным, приведенным на фигуре 1 «Сравнение каталитических свойств синтезированных образцов катализаторов и образцов сравнения», для образцов сравнения после 20-30 часов работы при Т=250 0С наблюдается монотонное снижение выхода целевого продукта.

Отмечено, что для образцов катализаторов состава CuO - 20,0, ZnO - 69,0, Al2O3 - 11,0 масс. %, промотированных щелочными металлами, не наблюдается снижения выхода целевого продукта за все время работы при Т= 250°С, а для системы, промотированной 0,5 масс. % K2O наблюдается увеличение значения выхода целевого продукта циклогексанона после 40 часов эксплуатации.

Таким образом, стабильность при рабочих температурах эксплуатации, промотированных оксидами щелочных металлов образцов катализаторов состава CuO - 20,0, ZnO - 69,0, Al2O3 - 11,0 мас.% и высокое значение выхода целевого продукта по сравнению с используемыми в промышленности образцами сравнения позволяют считать образец CuO - 20,0, ZnO - 69,0, Al2O3 - 11,0 0,5 % Na2O наиболее перспективным для применения в промышленности.

Способ получения медь-цинк-алюминиевого оксидного катализатора для дегидрирования циклогексанола в циклогексанон, включающий осаждение на предварительно осажденный ZnAl стабилизатор азотнокислых солей меди, цинка и алюминия из растворов нитратов меди, цинка и алюминия раствором карбоната натрия при заданных температуре и рН, с последующим выделением осадка, отмывку, сушку, прокаливание, отличающийся тем, что осаждение предварительно нагретого до 65°С раствора нитратов цинка и алюминия производят нагретым до 65°С раствором 10 мас.% раствором карбоната натрия при постоянном перемешивании при 65°С, с последующей выдержкой, фильтрованием и промывкой полученного осадка водой с температурой 45°С, с дальнейшим введением полученного стабилизатора в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании, осаждение полученной суспензии предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры, выдержкой при постоянном перемешивании и температуре в течение 1 часа, фильтрованием, промывкой осадка, сушкой при температуре 90-120°С и прокаливанием при температуре 300°С.



 

Похожие патенты:

Изобретение относится к способам получения катализатора для окисления СО в СO2 в различных очистных системах промышленности и может найти применение, в частности, при доочистке выхлопных газов двигателей внутреннего сгорания. Получение катализатора для окисления СО на основе медных нанопроволок включает изготовление ростовой полимерной матрицы, имеющей сквозные каналы-поры, создание на одной из поверхностей ростовой матрицы контактного слоя меди толщиной до 50 нм путем вакуумно-термического напыления, приготовление водного раствора электролита для осаждения меди, наращивание контактного слоя меди до толщины 50-70 мкм в гальванической ванне.

Предлагаемое изобретение относится к области каталитической химии, в частности к биметаллическому катализатору для жидкофазного селективного гидрирования фенилацетилена и диметилэтинилкарбинола и к способу его получения. Предложен биметаллический катализатор, содержащий палладий и медь, нанесенные на оксид кремния с удельной поверхностью 100-300 м2/г, при следующем соотношении компонентов, мас.%: палладий 0,5-0,8, медь 0,9-1,1, оксид кремния – остальное.

Изобретение относится к способу приготовления катализатора для селективного гидрирования арабинозы в арабинитол, катализатора, приготовленного по этому способу, и к способу селективного гидрирования арабинозы в арабинитол с использованием полученного катализатора. Способ приготовления катализатора включает нанесение металла на оксидный носитель.

Изобретение относится к способу получения электрохимического катализатора, обладающего электрокаталитической активностью к пероксиду водорода, путём электрохимического формирования полимерной матрицы и наночастиц золота, а именно в процессе одностадийного электролиза в течение 3 минут на катоде из нержавеющей стали при постоянном потенциале (-0,16)-(-1,2) В из электролита следующего состава: акриламид - 3 моль/л, N,N’-метилен-бис­акриламид - 0,05 моль/л, формальдегид - 3 моль/л, хлорид цинка - 0,2 моль/л, золотохлористоводородная кислота - 2-6 ммоль/л.

Изобретение относится к композиции многослойного нанесенного на носитель катализатора, способу ее получения и способу получения олефинов окислительной конденсации метана (ОСМ). Композиция характеризуется общей формулой AaZbEcDdOx/альфа-Al2O3 и содержит носитель на основе альфа-Al2O3, первый единичный оксидный слой, один или несколько смешанных оксидных слоев и необязательный второй единичный оксидный слой; где А - щелочноземельный металл; где Z - первый редкоземельный элемент; где Е - второй редкоземельный элемент; где D - окислительно-восстановительный реагент или третий редкоземельный элемент; причем первый редкоземельный элемент, второй редкоземельный элемент и третий редкоземельный элемент, при его наличии, не являются одинаковыми; где а равно 1,0; где b составляет от около 0,1 до около 10,0; где с составляет от около 0,1 до около 10,0; где d составляет от около 0 до около 10,0; где x уравновешивает степени окисления.

Настоящее изобретение относится к системе выпуска выхлопных газов для обработки выхлопных газов, производимых дизельным двигателем, а также к большегрузному транспортному средству с дизельным двигателем, содержащему данную систему. Система выпуска выхлопных газов содержит катализатор окисления и расположенное ниже по потоку устройство для регулирования выбросов, которое представляет собой катализатор селективного каталитического восстановления или катализатор фильтра селективного каталитического восстановления.

Настоящее изобретение относится к методам получения катализаторов путем изменения кислотных свойств носителя активной фазы катализатора, к катализатору и применению катализатора для синтеза этилена или пропилена, включающему реакцию метатезиса олефинов, в которой в качестве исходного сырья используют смесь олефиновых углеводородов С2-С4.
Изобретение относится к предшественникам каталитически активного материала или к каталитическим активным материалам, способу получения предшественника каталитически активного материала, способу получения каталитически активного материала и способу депарафинизации углеводорода или углеводородной смеси.
Изобретение относится к способу приготовления катализатора нефтепереработки, в частности к способу приготовления бифункционального катализатора гидрокрекинга, позволяющему из тяжёлых нефтяных фракций получать дизельное топливо с улучшенными низкотемпературными характеристиками. Катализатор готовят пропиткой по влагоёмкости водным раствором H2PtCl6 с концентрацией платины 3,75 – 7,06 г/л носителя, содержащего, мас.%: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем SiO2/Al2O3 = 48 – 10,0-20,0, ультрастабильный цеолит Y с силикатным модулем SiO2/Al2O3 = 80 – 10,0-15,0, связующее – γ-оксид алюминия – остальное, с последующими стадиями сушки и прокаливания.

Изобретение относится к устройству и способу нанесения на подложки покрытия из пористого оксида. В частности, оно относится к покрытию подложек, используемых для очистки отработавших газов.

Изобретение относится к способам получения катализатора для окисления СО в СO2 в различных очистных системах промышленности и может найти применение, в частности, при доочистке выхлопных газов двигателей внутреннего сгорания. Получение катализатора для окисления СО на основе медных нанопроволок включает изготовление ростовой полимерной матрицы, имеющей сквозные каналы-поры, создание на одной из поверхностей ростовой матрицы контактного слоя меди толщиной до 50 нм путем вакуумно-термического напыления, приготовление водного раствора электролита для осаждения меди, наращивание контактного слоя меди до толщины 50-70 мкм в гальванической ванне.
Наверх