Способ утилизации аммония из скрубберной воды с получением струвита

Изобретение относится к химической технологии выделения и утилизации аммонийного азота из водной фазы мокрых скрубберов с получением струвита и может быть использовано в химической, нефтехимической, металлургической, коксохимической промышленности, а также на объектах коммунального и сельского хозяйства. Способ утилизации аммония из скрубберной воды после поглощения аммиака раствором кислоты с получением струвита включает введение ионов магния в форме бишофита, и при необходимости ионов фосфата в форме гидрофосфатов натрия или калия. Перед осаждением струвита устанавливают в воде молярное соотношение ионов Mg2+:NH4+:PO43-, равное (1,0-1,2):1:1 и поддерживают при этом рН раствора не выше 4,6±0,3. Последующую нейтрализацию проводят раствором гидроксида натрия 2-6 M до значения рН 8,5-9,0 путем вливания щелочи в течение не более 45 секунд. Изобретение позволяет повысить степень извлечения ионов NH4+ из скрубберной воды разного состава, не прибегая при осаждении струвита к значительному избытку в скрубберной воде ионов Mg2+ и/или PO43- против их стехиометрического количества в составе струвита. 1 з.п. ф-лы. 1 ил., 1 табл., 6 пр.

 

Изобретение относится к химической технологии выделения и утилизации аммонийного азота из водной фазы мокрых скрубберов с получением струвита и может быть использовано в химической, нефтехимической, металлургической, коксохимической промышленности, а также на объектах коммунального и сельского хозяйства.

Известно несколько способов выделения аммония из водных отходов производства, отличающихся высоким содержанием аммонийного азота, и его утилизации в форме струвита.

Известен способ переработки аммиачно-азотных сточных вод с образованием струвита (CN 10384540 А), предусматривающий осаждение струвита из сточной воды с содержанием NH4+до 1260 мг/л при введении в сточную воду в качестве реагентов MgCl2 и Na2HPO4 для осаждения струвита при молярном соотношении Mg2+: NH4+: PO43- равном, 1,2:1:0.8 и рН 8-9, устанавливаемом с помощью NaOH (2-6 моль/л).

Недостатком способа является осаждение струвита из сточной воды при молярном соотношении Mg2+:NH4+:PO43- в ее составе, равном, 1,2:1:0.8, которое не соответствует стехиометрическому молярному соотношению этих ионов в составе струвита.

Известен способ очистки сточных вод от ионов аммония (RU 2715529 С1), предусматривающий осаждение струвита с использованием в качестве реагентов MgCl2 и Na2HPO4, осаждение проводят при рН 9,0, для поддержания рН используют 50%-ный раствор NaOH. Способ включает обязательную стадию приготовления Na2HPO4 путем нейтрализации технической фосфорной кислоты (73%-ная концентрация) с применением технической кристаллической кальцинированной соды с разбавлением водой и в условиях отдувки углекислого газа и охлаждения смеси. Молярное соотношение между H3PO4 и Na2CO3 при нейтрализации устанавливается равным H3PO4: Na2CO3, что соответствует получению Na2HPO4, используемого в качестве источника ионов PO43- при осаждении струвита. Недостатком изобретения является то, что не предусматривается использование фосфорной кислоты для поглощения аммиака в скруббере и не приводятся условия, которые позволяют выделять высококачественный струвит из скрубберной воды при молярном соотношении ионов Mg2+:NH4+:PO43-, близком к стехиометрическому составу струвита.

Известен способ регенерации азота и фосфора из сточных вод осаждением их ионов в форме струвита (RU 2756807 C1), предусматривающий использование в качестве реагента при осаждении струвита промежуточного продукта, содержащего смеси солей магния и фосфата для установления в растворе при осаждении струвита молярного соотношения Mg2+:NH4+:PO43-, равного (1.2-1):1:1, осаждение проводят при рН в диапазоне от 8,0 до 9,5. Осаждение струвита с помощью промежуточного продукта позволило поднять степень излечения ионов NH4+и PO43- из сточных вод до 98% и получить струвит без примеси посторонних фаз при молярном соотношении Mg2+:NH4+:PO43-, близким 1:1:1, то есть без применения избытка каких-либо реагентов. Согласно данному способу предусмотрено использование в качестве источников ионов Mg2+ хлорида или сульфата магния, и в качестве источника ионов PO43- солей Na3PO4 или K3PO4, и в качестве альтернативного источника ионов PO43- фосфорной кислоты, нейтрализованной NaOH или КOH в количестве до 3 моль на 1 моль H3PO4, или при использовании Na2CO3 или К2CO3 на 1 моль H3PO4 и до 1 моль NaOH или КOH на 1 моль H3PO4. Нейтрализацию проводят при 45 - 70°C и продолжительностью до 60 минут.

Недостатком способа является то, что не предусмотрено непосредственное использование фосфорной кислоты в скруббере для поглощения аммония и применение фосфатов натрия или калия при осаждении струвита из скрубберной воды, при значениях рН на уровне, необходимом для предотвращения образования твердых фаз, при подготовке раствора к осаждению струвита.

Известен способ повторного использования струвита после его растворения в кислоте для извлечения аммония из скрубберной воды [см. статью Zhang S., Yaoc C., Feng X., Yang M. Repeated use of MgNH4PO4·6 H2O residues for ammonium removal acid dipping. Desalination.- 2004. - V. 170. - P. 27-32]. Струвит растворяют в соляной кислоте при рН 4,8-5,0 и температуре ≥40°С, в растворе накапливаются ионы NH4+, и далее при рН 6,0 большую часть струвита трансформируют в ньюбериит (MgHPO4⋅3 H2O). Твердую фазу отфильтровывают и ньюбериит насыщают ионами NH4+в скрубберной воде, что приводит к возрастанию доли струвита в смеси фаз. За счет повторного возвращения смеси струвита и ньюбериита в водную среду с рН 4,8-5,0 создают условия для растворения струвита и обогащения раствора ионами NH4+. Оставшуюся смесь твердых фаз отфильтровывают и направляют на повторное насыщение ионами NH4+ при рН=9,0 в скрубберной воде, а раствор, обогащенный ионами NH4+, становится продуктом данного способа извлечения ионов NH4+из скрубберной воды и утилизации извлеченного аммония. Степень извлечения аммония из скрубберной воды - до 88,2%.

Недостатком известного способа является то, что он не предусматривает получение струвита как конечного продукта и при рН 4,8-5,0 и выше происходит формирование смеси фаз, основными компонентами которой являются струвит и, преимущественно, ньюбериит. Применение известного способа не обеспечивает достижение высокой степени извлечения NH4+ из скрубберной воды.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ удаления аммония в виде струвита из сточных вод мокрых скрубберов (см. публикацию: Huang A.H. Removal of ammonium as struvite from wet scrubber wastewater / A.H. Huang, J.C. Liu // Water, Air, and Soil Pollution. - 2014. - V. 225. - N. 8. - ID 2062. https://doi.org/10.1007/s11270-014-2062-2). Известный и предлагаемый способы предназначаются для извлечения и утилизации в форме струвита аммонийного азота из отработанной воды мокрых скрубберов.

Основные недостатки известного способа, принятого за прототип, сводятся к следующему. В качестве реагентов для осаждения струвита из скрубберной воды, содержащей ионы NH4+, применены два варианта реагентов: реагент А (MgCl2+К2HPO4) и реагент В (MgO+85%-ная H3PO4), их используют в количествах, соответствующих молярному соотношению в воде, равному 1: 1: 1, и при этом получают следующие результаты по степени осаждения ионов NH4+ и PO43- (%) при рН 8,0, 8,5, 9,0 для вариантов А и В:

вариант А: NH4+ 70,30, 73,27 и 71,97%, PO43- 95,62, 98,38 и 99,23%;

вариант В: NH4+ 82,25, 88,13 и 82,32, PO43- 44,45, 35,39 и 32,59%.

Оба варианта известного способа не обеспечивают достижения высоких степеней удаления как NH4+ ионов, так и ионов PO43- из скрубберной воды и, более того, вариант В с использованием MgO и H3PO4 показал особенно низкие степени излечения ионов PO43-. Предлагаемые согласно известному способу варианты осаждения струвита из скрубберной воды имеют также тот недостаток, что не могут обеспечить достижение рН на уровне, необходимом для предподготовки раствора перед осаждением струвита, что необходимо для повышения эффективности извлечения ионов NH4+из водной среды.

Признаки прототипа, совпадающие с признаками заявленного решения:

• Осаждение струвита проводят с использованием скрубберной воды, содержащей ионы NH4+;

• При осаждении струвита молярное соотношение ионов Mg2+:NH4+:PO43- в растворе устанавливается равным 1:1:1;

• Молярное соотношение ионов Mg2+:NH4+:PO43- в растворе, равное 1:1:1, достигается за счет дополнительного введения в раствор ионов Mg2+ и PO43- в количествах, необходимых, для осаждения струвита;

• Нейтрализацию скрубберной воды проводят с помощью NaOH (2-6М) до установления значения рН в диапазоне 8,5-9,5.

Задача заявленного способа - повысить степень извлечения ионов NH4+ из скрубберной воды разного состава, не прибегая при осаждении струвита к значительному избытку в скрубберной воде ионов Mg2+ и/или PO43- против их стехиометрического количества в составе струвита.

Поставленная задача была решена за счет того, что в заявленном способе введена стадия предподготовки скрубберной воды перед осаждением струвита, включающая установление в воде перед осаждением струвита молярного соотношения ионов Mg2+:NH4+:PO43-, равного (1.0-1.2):1:1, и поддержания при этом рН раствора не выше, чем 4,6±0,3, что предотвращает осаждение смеси фосфатов магния. Осаждение струвита осуществляется за счет нейтрализации скрубберной воды с помощью NaOH (2-6 моль/л) в течение периода времени до 45 секунд значение рН раствора поднимается до 8,5-9,5.

При использовании фосфорной кислоты в составе скрубберной воды для поглощения аммиака поглощение ведут до молярного соотношения NH4+:РО43-, равного 1:1 без внесения ионов фосфатов в форме гидрофосфатов натрия или калия.

Признаки предлагаемого способа, отличные от прототипа:

• осуществление стадии предподготовки скрубберной воды с установлением молярного соотношения Mg2+:NH4+:PO43-, равного (1.0-1.2):1:1 и рН раствора не выше, чем 4,6±0,3, при котором не допускается осаждение смеси фосфатов магния;

• нейтрализация скрубберной воды при осаждении струвита путем вливания в нее при перемешивании в течение короткого времени (45 секунд) концентрированного раствора щелочи NaOH.

• использование в кислых скрубберах H3PO4 в составе водной среды для поглощения аммиака и достижения на этой стадии молярного соотношения PO43-:NH4+, равного 1:1.

При экспериментальном изучении зависимости влияния рН на образование твердых фаз установлено, что поддержание значений рН на уровне 4,6±0,3 при одновременном присутствии в растворе ионов магния, аммония и фосфата не приводит к образованию каких-либо твердых фаз в широком диапазоне концентраций (до 8000 мг/л по аммонию). Уровень рН 4,6±0,3 выбран как предельный для установления в скрубберной воде после внесения магниевого и фосфатного реагента с целью избежать фазообразование и предотвратить образование смешанных твердых фаз на стадии осаждения струвита.

Параметром, влияющим на степень извлечения аммония в ходе осаждения струвита, является продолжительность операции введения в раствор щелочного реагента, которая в свою очередь влияет на время установления нужного для осаждения струвита значения рН. Установлено, что при быстром повышении рН степени извлечения аммония выше, чем при медленном.

На фиг. представлена эмпирическая зависимость, характеризующая данное явление: для установления зависимости объем скрубберной воды взят по прототипу 500 мл, концентрация аммония составила 500 мг/л, скорость вращения мешалки при нейтрализации раствора 100 об/мин, объем 1М раствора NaOH для нейтрализации - 56 мл.

Для сохранения высокой (выше 98,0%) степени извлечения аммония необходимо время добавления щелочи не более 45 секунд, что рекомендуется согласно данному способу.

В таблице приведены результаты сравнения идентичных образцов скрубберных вод, по составу соответствующих прототипу и использованных для осаждения струвита по предлагаемому способу. Отличающимся параметром для данных образцов является время добавления щелочи до установления нужного значения рН.

Результаты проверки способа на примере образца скрубберных вод, по составу соответствующих прототипу, показали, что время добавления щелочи является ключевым параметром, влияющим на степень извлечения струвита.

Способ утилизации аммония из скрубберной воды после поглощения аммиака раствором сильной кислоты с получением струвита включает введение в скрубберную воду, содержащую ионы аммония, в которые переходит аммиак, необходимые для осаждения струвита, ионы магния в форме бишофита (MgCl2⋅6H2O), и ионы фосфата в форме фосфорной кислоты или гидрофосфатов натрия/калия. Если фосфорную кислоту используют в составе скрубберной воды для поглощения аммиака, то поглощение проводят до установления молярного соотношения NH4+:PO43-, равного 1:1, которое соответствует стехиометрическому соотношению указанных ионов в составе струвита. При поглощении аммиака скрубберной водой, содержащей другие кислоты, например серную, в качестве источника фосфата используют гидрофосфаты натрия/калия, в количестве необходимом для достижения молярного соотношения PO43-:NH4+ равным 1: 1. В обоих вариантах в скрубберную воду, насыщенную ионами аммония, перед осаждением струвита вводят ионы магния, в форме бишофита в молярном соотношении Mg2+:NH4+, равном (1,0-1,2):1. Чтобы исключить при этом образование смеси фаз рН скрубберной воды не должно превышать значения 4,6±0,3. При последующем введении в скрубберную воду в течение периода времени не более 45 сек раствора NaOH (2-6 M) при перемешивании и до рН 8,5-9,5, происходит осаждение струвита без примеси посторонних фаз и повышается степень извлечения NH4+ и PO43- из скрубберной воды до уровня 96-98%.

Ниже представлены примеры, иллюстрирующие заявляемый способ.

Пример №1

Взято 500 мл скрубберной воды после процесса абсорбции аммиака кислым раствором H3PO4. Для приготовления 500 мл раствора кислоты, необходимого для поглощения аммиака, взято 3,63 г 75% фосфорной кислоты, концентрация кислоты подобрана с таким расчетом, чтобы конечная концентрация аммония после сорбции составила 1000 мг/л и соотношение NH4+:PO43- в итоговой смеси было 1:1. Значение рН скрубберной воды составил рН=4,61. Концентрацией аммония в данной скрубберной воде составила 1000 мг/л.

В скрубберную воду при перемешивании лопастной мешалкой со скоростью 100 об/мин добавлено 6,772 г MgCl2⋅6H2O, растворенных в 8 мл дистиллированной воды, в соотношении 1,2: 1 по моль к NH4+, образования твердых фаз не произошло, рН смеси составил 4,14, что удовлетворяет требованию не выше 4,6±0,3. Все соотношения компонентов рассчитаны таким образом, чтобы мольное соотношение компонентов Mg:NH4+:PO43- в итоговой смеси было 1,2: 1: 1.

Далее в систему добавляли 1М р-ра NaOH до значения рН=9,50, объем раствора составил 60 мл. Время добавления раствора щелочи 7 сек. После повышения рН в ходе добавления раствора щелочи произошло образование осадка струвита. Осадок был выдержан в течение 5 мин, затем отфильтрован, высушен на воздухе.

Масса осадка струвита составила 6,799 г, что составляет 99,82% от теоретической массы (6,811 г). Остаточная концентрация аммония в скрубберной воде составила 11,0 мг/л, что соответствует степени извлечения аммония 98,9%.

Пример №2

Взято 500 мл скрубберной воды после процесса абсорбции аммиака кислым раствором H3PO4. Для приготовления 500 мл раствора кислоты, необходимого для поглощения аммиака, взято 29,04 г 75% фосфорной кислоты, концентрация кислоты подобрана с таким расчетом, чтобы конечная концентрация аммония после сорбции составила 8000 мг/л и соотношение NH4+: PO43- в итоговой смеси было 1:1.

В скрубберную воду при перемешивании лопастной мешалкой со скоростью 100 об/мин добавлено 54,10 г MgCl2⋅6H2O растворенных в 100 мл дистиллированной воды в соотношении 1,2:1 по моль к NH4+, образования твердых фаз не произошло, рН смеси составил 3,87, что удовлетворяет требованию не выше 4,6±0,3. Все соотношения компонентов рассчитаны таким образом, чтобы мольное соотношение компонентов Mg:NH4+:PO43- в итоговой смеси было 1,2:1:1.

Далее в систему добавляли 2М р-ра NaOH до значения рН=8,50, объем раствора составил 34 мл. Время добавления щелочи 30 сек. После повышения рН в ходе добавления раствора щелочи произошло образование осадка струвита. Осадок был выдержан в течение 5 мин, затем отфильтрован, высушен на воздухе.

Масса осадка струвита составила 53,601 г, что составляет 98,5% от теоретической массы (54,39 г). Остаточная концентрация аммония в скрубберной воде составила 10,0 мг/л, что соответствует степени извлечения аммония 99,88%.

Пример №3

Взято 500 мл скрубберной воды. Модель сточной воды по составу соответствует прототипу: рН 6.95, NH4+ 527,94 мг/л (0,0293 М)., SO42- 207,36 мг/л, NO3- 46,5 мг/л, NO2- 1897,5 мг/л, Mg2+ 55,89 мг/л, Ca2+ 192,4 мг/л. Предподготовку скрубберной воды с установлением молярного соотношения Mg2+:NH4+:PO43-, равного (1,0-1,2):1:1, проводили с помощью добавления соли NaH2PO4⋅2Н2О и ионов магния в форме бишофита 2,285 г и 3,57 г соответственно, рН смеси составил 4,88, что удовлетворяет требованию не выше 4,6±0,3, образования твердых фаз не произошло.

Далее в систему добавляли 2М р-ра NaOH до значения рН=9,00, объем раствора составил 28 мл. Время добавления раствора щелочи 10 сек. После повышения рН в ходе добавления раствора щелочи произошло образование осадка струвита. Осадок был выдержан в течение 5 мин, затем отфильтрован, высушен на воздухе.

Масса осадка струвита составила 3,551 г, что составляет 98,89% от теоретической массы (3,590 г). Остаточная концентрация аммония в скрубберной воде составила 8,9 мг/л, что соответствует степени извлечения аммония 98,3%.

Пример 4

Взято 500 мл скрубберной воды после процесса абсорбции аммиака кислым раствором H2SO4. Для приготовления 500 мл раствора кислоты, необходимого для поглощения аммиака, взято 5,56 г концентрированной 98% серной кислоты, концентрация кислоты подобрана с таким расчетом, чтобы конечная концентрация аммония после сорбции составила 4000 мг/л. Значение рН воды после поглощения составило рН=3,65.

Предподготовку скрубберной воды с установлением молярного соотношения Mg2+:NH4+:PO43-, равного (1,0-1,2):1:1, проводили с помощью добавления соли NaН2PO4⋅2Н2О и ионов магния в форме бишофита 17,316 г и 27,04 г соответственно, рН смеси составил 4,85, что удовлетворяет требованию не выше 4,6±0,3, образования твердых фаз не произошло.

Далее в систему добавляли 2М р-ра NaOH до значения рН=9,00, объем раствора составил 31 мл. Время добавления щелочи 20 сек. После повышения рН в ходе добавления раствора щелочи произошло образование осадка струвита. Осадок был выдержан в течение 5 мин, затем отфильтрован, высушен на воздухе.

Масса осадка струвита составила 26,937 г, что составляет 98,05% от теоретической массы (27,195 г). Остаточная концентрация аммония в скрубберной воде составила 8,3 мг/л, что соответствует степени извлечения аммония 99,79%.

Пример №5

Взято 500 мл скрубберной воды. Модель сточной воды по составу соответствует прототипу: рН 6,95, NH4+ 527,94 мг/л (0,0293 М), SO42- 207,36 мг/л, NO3- 46,5 мг/л, NO2- 1897,5 мг/л, Mg2+ 55,89 мг/л, Ca2+ 192,4 мг/л. Предподготовку скрубберной воды с установлением молярного соотношения Mg2+:NH4+:PO43-, равного (1.0-1.2):1:1, проводили с помощью добавления соли КH2PO4 и ионов магния в форме бишофита 1,996 г и 3,57 г соответственно, рН смеси составил 4,86, что удовлетворяет требованию не выше 4,6±0,3, образования твердых фаз не произошло.

Далее в систему добавляли 2 М р-ра NaOH до значения рН=9,00, объем раствора составил 28,5 мл. Время добавления раствора щелочи 20 сек. После повышения рН в ходе добавления раствора щелочи произошло образование осадка струвита. Осадок был выдержан в течение 5 мин, затем отфильтрован, высушен на воздухе.

Масса осадка струвита составила 3,520 г, что составляет 98,00% от теоретической массы (3,590 г). Остаточная концентрация аммония в скрубберной воде составила 8,98 мг/л, что соответствует степени извлечения аммония 98,29%.

Пример №6

Взято 500 мл скрубберной воды после процесса абсорбции аммиака кислым раствором H3PO4. Для приготовления 500 мл раствора кислоты, необходимого для поглощения аммиака, взято 1,81 г 75% фосфорной кислоты, концентрация кислоты подобрана с таким расчетом, чтобы конечная концентрация аммония после сорбции составила 500 мг/л и соотношение NH4+:PO43- в итоговой смеси было 1:1. Значение рН скрубберной воды составил рН=4,76.

В скрубберную воду при перемешивании лопастной мешалкой со скоростью 100 об/мин добавлено 3.386 г MgCl2⋅6H2O, растворенных в 5 мл дистиллированной воды, в соотношении 1.2:1 по моль к NH4+, рН смеси составил 4,28, что удовлетворяет требованию не выше 4,6±0,3, образования твердых фаз не произошло. Все соотношения компонентов рассчитаны таким образом, чтобы мольное соотношение компонентов Mg:NH4+:PO43- в итоговой смеси было 1,2:1:1.

Далее в систему добавляли 1М р-ра NaOH до значения рН=9,50, объем раствора составил 56 мл. Время добавления раствора щелочи варьировали.

Масса осадка струвита составила 3,396 г, что составляет 99,73% от теоретической массы (3,402 г). Остаточная концентрация аммония в скрубберной воде составила 8,98 мг/л, что соответствует степени извлечения аммония 98,29%.

1. Способ утилизации аммония из скрубберной воды после поглощения аммиака раствором кислоты с получением струвита путем введения ионов магния в форме бишофита и при необходимости ионов фосфата в форме гидрофосфатов натрия или калия, и последующей нейтрализацией раствора гидроксидом натрия 2-6 М до значения рН 8,5-9,5, отличающийся тем, что перед осаждением струвита устанавливают в воде молярное соотношение ионов Mg2+:NH4+:PO43-, равное (1,0-1,2):1:1, и поддерживают при этом рН раствора не выше чем 4,6±0,3, а нейтрализацию раствором гидроксида натрия проводят путем вливания раствора щелочи в течение не более 45 секунд.

2. Способ по п.1, отличающийся тем, что при использовании фосфорной кислоты в составе скрубберной воды для поглощения аммиака поглощение ведут до молярного соотношения NH4+:РО43-, равного 1:1 без внесения ионов фосфатов в форме гидрофосфатов натрия или калия.



 

Похожие патенты:

Группа изобретений относится к области медицины и может быть использована для экстемпорального изготовления изменяемого по запросу количества физиологического или изотонического раствора на основе воды. Для этого предложена установка, которая содержит по меньшей мере один интерфейс выбора для обеспечения пользователю возможности задания требуемого количества раствора, которое необходимо изготовить, из множества возможных количеств; средство подачи очищенной воды, содержащее по меньшей мере одну станцию очистки воды, выполненную с возможностью приема воды извне установки и ее очистки; средство для подачи по меньшей мере одного растворяемого материала; по меньшей мере одну станцию смешивания для смешивания очищенной воды с указанным по меньшей мере одним растворяемым материалом в таких количествах, чтобы получить заданное количество раствора; средство управления, содержащее средство расчета, связанное с интерфейсом, для расчета количества очищенной воды и количества растворяемого материала, подлежащих смешиванию для изготовления количества раствора, заданного пользователем.

Изобретение относится к спиртовой промышленности и предназначено для электрохимической очистки спиртных напитков от сивушных масел. Изобретение относится к способу очистки спиртного напитка от сивушных масел, в котором подают спиртной напиток в проточный электрохимический безмембранный реактор, где за счет электролиза осуществляют реакцию разложения содержащихся в упомянутом напитке соединений сивушных масел на ионы с одновременным образованием оксидов углерода.

Изобретение относится к системе оптимизации формирования газовых нанопузырьков в растворе и может быть использовано для дезинфицирования масс воды, воздуха, медицинского оборудования, а также для стерилизации фруктов, овощей и других скоропортящихся продуктов. Система содержит: центробежный насос, содержащий смесительную камеру, для перемещения жидкости из резервуара в резервуар высокого давления; источник газа для ввода первого количества газа в указанную жидкость внутри указанной смесительной камеры для получения первого раствора, содержащего первый объем газовых нанопузырьков; резервуар высокого давления для приема указанного первого раствора из указанного центробежного насоса, и удержания первого раствора при внутреннем давлении в течение выбранного периода времени, чтобы получить второй раствор, содержащий второй объем газовых нанопузырьков дополнительно к указанному первому объему; и одну или более форсунок для распыления указанного второго раствора в указанный резервуар, причем указанные одна или более форсунок выполнены такого размера и формы, чтобы высвобождать часть указанных объемов газовых нанопузырьков в указанную жидкость.

Изобретение относится к способам очистки морской воды от соли с использованием технологии обратного осмоса и энергии морских волн и может быть применимо для сельскохозяйственного, промышленного и бытового водоснабжения. Способ включает использование обратноосмотического модуля, буя с положительной плавучестью, насоса высокого давления, воздушной камеры с эластичной мембраной, соединительного троса и донного пригруза (анкера).

Изобретение относится к приготовлению очищенных артезианских вод с кондиционированием по солевому составу, применяемых в качестве питьевой воды и столового напитка, и может быть использовано при очистке минерализованных, природных вод перед розливом воды в бутыли и другие герметичные емкости. Предложен способ приготовления питьевой воды, который включает добычу артезианской минеральной воды с общей минерализацией 1,0-2,0 г/дм3, с содержанием катионов: кальция 120-200 мг/дм3, магния 30-60 мг/дм3, натрия+калия 100-200 мг/дм3, анионов: хлоридов <100 мг/дм3, гидрокарбонатов 350-550 мг/дм3, сульфатов 300-550 мг/дм3 из скважины, её аэрацию, затем фильтрацию на песчаных фильтрах и фильтрах тонкой очистки, далее умягчение и фильтрацию обратным осмосом с получением очищенной воды - пермеата, после чего проводят купажирование в виде смешивания полученного на выходе из системы обратного осмоса пермеата с исходной артезианской минеральной водой в соотношении 6,7:1, причем на этапе купажирования дозируют минеральные добавки селена (Se) в виде концентрата с содержанием Se 10-14 мг/л и цинка (Zn) в виде концентрата с содержанием Zn 12-16 мг/л, которые предварительно смешивают в дозирующем устройстве и подают в поток пермеата, при следующем соотношении исходных компонентов, об.%: пермеат 85-89,95; артезианская минеральная вода 10-14,95; селен (Se) в виде концентрата с содержанием Se 10-14 мг/л 0,04-0,06; цинк (Zn) в виде концентрата с содержанием Zn 12-16 мг/л 0,01-0,02.

Группа изобретений относится к контролю микроорганизмов в промышленных технологических водах и может быть использована для контроля и удаления биопленки с поверхности при контактировании с водной промышленной системой. Предложен способ контроля и удаления биопленки с поверхности, контактирующей с промышленными технологическими водами, включающий получение композиции, состоящей из полиэтиленимина (PEI), биоцида, который выбирают из группы, состоящей из монохлорамина, дихлорамина или их комбинации, и воды, и добавление указанной композиции в промышленные технологические воды.
Группа изобретений относится к области очистки поверхности воды от нефтяных загрязнений при разливах нефти, а также к очистке водных акваторий от углеводородных пленок и может быть использована при ликвидации аварийных разливов нефти. Способ очистки поверхности воды от нефтяного загрязнения включает высушивание и измельчение растительного сорбента, контактирование загрязненной поверхности воды с растительным сорбентом и удаление его с водной поверхности.

Изобретение относится к области сорбционной очистки вод, а именно к сорбционно-фильтрующим загрузкам, которые могут использоваться для очистки вод из нецентрализованных источников водоснабжения, в частности поверхностных вод, вод из родников, колодцев, а также артезианских скважин и скважин на глубокий и мелкий песок.
Изобретение относится к области получения сорбентов, применимых для использования на объектах окружающей среды, и может быть использовано для очищения загрязненных почв, естественных водоёмов и сточных вод. Представлен способ получения комплексного сорбента, включающий подготовку водного раствора гуминовых кислот, измельчение и последующую термомеханическую обработку растительного сырья в мельнице-активаторе при температуре 100-200°С, обработку подготовленного растительного сырья полученным раствором гуминовых кислот и сушку его, характеризующийся тем, что проводят смешение гуминовых кислот с перкарбонатом натрия при количестве перкарбоната натрия 5-10% мас., механическую обработку смеси проводят в мельницах-активаторах, обеспечивающих ускорение мелющих тел 100-400 м/с2 и время пребывания в зоне обработки 2-10 минут, готовят водный раствор обработанных гуминовых кислот с концентрацией 100-500 мг/л, обработку подготовленного растительного сырья полученным раствором гуминовых кислот проводят при гидромодуле 1:10-1:20 в течение 2 часов.

Изобретение относится к области охраны окружающей среды, в частности к способу получения сорбента для очистки сточных вод от нефтепродуктов, и может быть использовано в нефтегазовом комплексе, химической технологии и других отраслях промышленности для предварительной очистки сточных вод, сильно загрязненных нефтью.
Наверх