Способ юстировки параллельности оптических осей компонентов оптико-электронного устройства

Изобретение относится к области оптико-электронного приборостроения и касается способа юстировки параллельности оптических осей компонентов оптико-электронного устройства. Способ включает в себя юстировку параллельности оптических осей видеокамеры и тепловизора для обеспечения параллельности их оптических осей с оптической осью излучающего канала лазерного дальномера. Способ заключается в том, что на определенном расстоянии от оптико-электронного устройства помещают миру, на которой нанесены метки, расположение которых соответствует межосевым расстояниям оптических осей компонентов оптико-электронного устройства. Далее формируют видеокадр с прицельным перекрестием. С помощью регулировочных элементов достигают наименьшего отклонения от параллельности оптических осей видеокамеры и тепловизора относительно оптической оси излучающего канала лазерного дальномера. Центры прицельных перекрестий при юстировке располагают в главных точках, а в энергонезависимой памяти для видеокамеры и тепловизора сохраняют угловые рассогласования между направлениями их главных осей и направлениями на центры меток на мире в горизонтальной и вертикальной плоскостях. Технический результат заключается в снижении величины углового рассогласования между оптическими осями компонентов оптико-электронного устройства. 4 ил.

 

Изобретение относится к оптико-электронным устройствам, а именно к устройствам визуального контроля для мониторинга окружающей обстановки, и предназначено для повышения точности оценивания угловых координат объектов, наблюдаемых в дневное и ночное время суток.

Известен способ юстировки параллельности оптических осей информационного и визирного каналов прицела-прибора наведения (патент RU 2255292, МПК F41G 7/00, F41G 11/00, опубл. 27.06.2005). Данный способ включает подвижки на общей стойке компонентов информационного и визирного каналов до обеспечения параллельности их оптических осей путем совмещения сетки визирного канала и полосок излучателей по курсу и тангажу с перекрестием сетки-мишени, крепление и фиксацию компонентов крепежными элементами. Недостатком способа является сложность настройки сведения оптических осей визирного и информационного каналов вследствие использования только механического способа юстирования, что практически не дает возможности обеспечить погрешность юстировки, предъявляемую к оптическим прицелам.

В качестве прототипа выбран наиболее близкий по совокупности признаков способ юстировки параллельности оптических осей компонентов оптико-электронного устройства (RU 2703492, МПК F41G 3/06 (2006.01), G02B 23/12 (2006.01), G01B 11/27 (2006.01), опубл. 17.10.2019), включающего подвижки оптико-электронных компонентов - видеокамеры и тепловизора, для обеспечения параллельности их оптических осей с оптической осью излучающего канала лазерного дальномера. При этом на определенном расстоянии от оптико-электронного устройства помещают миру, на которой нанесены метки, расположение которых соответствует межосевым расстояниям оптических осей компонентов оптико-электронного устройства. Далее с помощью пластинчатых пружин и котировочных подпружиненных винтов добиваются предельно-возможного наименьшего отклонения от параллельности оптических осей видеокамеры, тепловизора относительно оптической оси излучающего канала лазерного дальномера. При этом величины отклонения от параллельности оптических осей видеокамеры и тепловизора относительно оптической оси излучающего канала лазерного дальномера по горизонтали и вертикали определяются и сохраняются в энергонезависимую память блока видеообработки.

При реализации способа прототипа достигается наиболее точное совмещение перекрестия миры с указателем прицельного перекрестия, устанавливаемого по центру кадра как видеокамеры, так и тепловизора, т.е. с пиксельными координатами центров перекрестий С1=(сх1, су1)=(0,5WB, 0,5НВ) и С2=(сх2, су2)=(0,5WТПВ, 0,5НТПВ) соответственно, где WB, НВ и WTПВ, Нтпв - соответственно ширина и высота кадра видеокамеры (В) и тепловизора (ТПВ) в пикселях. При этом авторы способа прототипа принимают гипотезу о том, что оптическая (главная) ось камеры каждого спектрального диапазона пересекает плоскость матрицы фотоприемного устройства строго в центральной точке.

Однако из (Hartley R, Zisserman A. Multiple View Geometry in Computer Vision: 2nd edition. Cambridge: Cambridge University Press, 2003. 656 p) известно, что в общем случае пиксельные координаты главной точки Р=(рх, ру), в которой оптическая ось камеры пересекает плоскость матрицы фотоприемного устройства, не совпадают с геометрическим центром матрицы С. Поэтому совмещение согласно способу прототипа не обеспечивает параллельности оптических осей видеокамеры и тепловизора. Данную ситуацию иллюстрирует фиг. 1, где схематично приведена геометрическая постановка задачи юстировки согласно способу прототипа камер 1 и 2, разнесенных на расстояние d, и лазерного дальномера 3 по мире 4, удаленной от камер на расстояние D, с метками 5 и 6 с расстоянием между ними d.

Оптические оси камер 1 (В) и 2 (ТПВ), условно показанные на фиг. 1 пунктирными прямыми, проходят через главные точки P1 и Р2, в общем случае не совпадающие с геометрическими центрами данных камер С1 и С2, с которыми в процессе юстировки согласно способу прототипа стремятся совместить прицельные перекрестия 7. Поэтому совмещение метки и прицельного перекрестия по способу прототипа в общем случае не позволяет обеспечить параллельность оси лазерного дальномера 3 (на фиг. 1 показана штрихпунктирной линией) и оптических осей камер 1 и 2.

Техническая проблема, решаемая заявляемым изобретением, заключается в отсутствии такого способа юстировки параллельности оптических осей компонентов оптико-электронного устройства, в котором бы учитывалась юстировка камер, у которых главная точка Р не совпадает точкой геометрического центра матрицы фотоприемного устройства С.

Технический результат изобретения заключается в снижении величины углового рассогласования между оптическими осями компонентов оптико-электронного устройства при их калибровке по мире с метками, рассмотренной в изобретении способа прототипа.

Технический результат достигается тем, что прицельные перекрестия устанавливаются не в точках геометрического центра матриц С1 и С2, а в главных точках Р1 и Р2, и при юстировке параллельности оптических осей компонентов оптико-электронного устройства с помощью пластинчатых пружин и котировочных подпружиненных винтов добиваются предельно-возможного наименьшего пиксельного расстояния между проекцией центра метки на плоскость изображения и центром прицельного перекрестия. При этом при совмещении в идеальном случае центра перекрестия 7 с центрами меток 5 и 6 достигается параллельность оптических осей компонентов оптико-электронного устройства (фиг. 2).

В общем случае точное совмещение прицельного перекрестия 7 и центра метки может быть не достигнуто, поэтому угловые рассогласования между линиями визирования, проходящими через точки Р1 и Р2, и угловыми направлениями на центры меток (фиг. 3 и 4), проходящими через точки М1=(mx1, my1) и М2=(mx2, my2), заносят в память блока видеообработки:

Δϕxi и Δϕyi - угловые рассогласования в горизонтальной и вертикальной плоскостях соответственно, a fxi и fyi - фокусные расстояния i-го компонента оптико-электронного устройства, получаемые из его матрицы внутренних параметров Ki: соответственно элементы первой и второй строки, лежащие на главной диагонали.

Способ юстировки параллельности оптических осей компонентов оптико-электронного устройства с видеокамерой и тепловизором до обеспечения параллельности их оптических осей с оптической осью излучающего канала лазерного дальномера, заключающийся в том, что на определенном расстоянии от оптико-электронного устройства помещают миру, на которой нанесены метки, расположение которых соответствует межосевым расстояниям оптических осей компонентов оптико-электронного устройства, при этом формируют видеокадр с прицельным перекрестием, с помощью регулировочных элементов достигают предельно возможного наименьшего отклонения от параллельности оптических осей видеокамеры и тепловизора относительно оптической оси излучающего канала лазерного дальномера и величины угловых отклонений вычисляют и сохраняют в энергонезависимой памяти, отличающийся тем, что центры прицельных перекрестий при юстировке располагают в главных точках, а в энергонезависимой памяти для видеокамеры и тепловизора сохраняют угловые рассогласования между направлениями их главных осей и направлениями на центры меток на мире в горизонтальной и вертикальной плоскостях.



 

Похожие патенты:

Изобретение относится к способу радиального выравнивания колесных пар рельсовых транспортных средств относительно системы координат станка для диагностики колесных пар и/или обработки колесных пар. Способ включает следующие этапы: a) располагают колесную пару в рабочей зоне станка; b) определяют систему координат со стороны станка на предполагаемом колесном центре каждого колеса, при этом ось X соответствует протяженности по вертикали, ось Y соответствует протяженности по горизонтали и ось Z описывает полученную протяженность колеса на глубину; c) измеряют расстояние между задними частями колес и определяют Z-положение = 0 на соответствующей задней части колеса; d) определяют уникальное Z-положение для каждой точки измерения; e) располагают по одному измерительному датчику в указанном Z-положении; f) измеряют Х-положение соответствующей точки измерения; g) выравнивают колесную пару путем перемещения одного из колес по вертикали для совмещения Х-положений точек измерения обоих колес.

Изобретение может быть использовано при изготовлении и сборке трехкомпонентных осесимметричных объективов. Интерферометрический способ юстировки трехкомпонентных осесимметричных объективов включает предварительную сборку объектива по геометрическим базам, установку плоского зеркала перпендикулярно оси главного зеркала, формирование в центре поля зрения автоколлимационного изображения с плоским зеркалом при установке фокальной точки объектива интерферометра на оси главного зеркала в фокусе объектива юстировкой вторичного зеркала.

Раскрыто устройство и способ для распределенного определения прямолинейности рабочей поверхности скребкового конвейера на основе волоконно-оптического измерения. Устройство содержит широкополосный источник излучения, группу первых волоконно-оптических циркуляторов, группу вторых волоконно-оптических циркуляторов, группу коллиматоров, группу отражающих пленок, группу третьих волоконно-оптических циркуляторов и анализатор оптического пути.

Изобретение относится к финишной обработке и контролю крупногабаритных осевых и внеосевых зеркал телескопов. В процессе интерферометрического контроля формы асферического зеркала с помощью интерферометра и корректора волнового фронта в виде комбинированного дифракционного оптического элемента (ДОЭ), включающего основную дифракционную структуру и две дополнительные кольцевые центрирующую и фокусирующую, совмещают положение светящегося пятна от фокусирующей структуры в вершине асферической поверхности с геометрическим ее центром, определяют децентрировочную кому, которую учитывают и устраняют при последующей доводке формы до требуемой расчетной.

Изобретение относится к системам для вычисления параметров геометрического положения колес транспортных средств по данным трехмерного сканирования поверхностей колес и рамы. Трехмерное сканирование поверхностей колес и рамы осуществляется бесконтактным методом, с помощью блоков трехмерного сканирования и отображаемых на транспортном средстве световых элементов, при котором на его колеса и раму проецируют ряд световых элементов, снимают подсвеченные колеса, а также раму и передают полученные изображения на вычислительное устройство, которое осуществляет расчет необходимых параметров.

Изобретение относится к области экспериментальной аэродинамики и может использоваться при проведении исследований в трансзвуковых аэродинамических трубах, имеющих перфорацию рабочей части. Техническим результатом является создание устройства, позволяющего оперативно производить измерение смещения отверстий в пластинах панелей перфорации с фиксацией измеренных значений в памяти прибора-компьютера для последующей информационной обработки.

Группа изобретений относится к области лазерной локации и лазерной связи в открытом пространстве. Способ наведения лазерных пучков заключается в том, что при помощи источника лазерного излучения формируют лазерный пучок, который разделяют на две части, при этом первый парциальный пучок посылают в направлении удаленного объекта, а второй парциальный пучок фокусируют в апертуре фотоприемного устройства (ФПУ) для создания изображения источника излучения.

Группа изобретений относится к области лазерной локации и лазерной связи в открытом пространстве. Способ наведения лазерных пучков заключается в том, что при помощи источника лазерного излучения формируют лазерный пучок, который разделяют на две части, при этом первый парциальный пучок посылают в направлении удаленного объекта, а второй парциальный пучок фокусируют в апертуре фотоприемного устройства (ФПУ) для создания изображения источника излучения.

Группа изобретений относится к системам освещения транспортного средства. Система освещения для автоприцепа, буксируемого транспортным средством, содержит компонент выявления угла сцепного устройства, источник света и фотолюминесцентную структуру.

Группа изобретений относится к системам освещения транспортного средства. Система освещения для автоприцепа, буксируемого транспортным средством, содержит компонент выявления угла сцепного устройства, источник света и фотолюминесцентную структуру.

Изобретение относится к области бронетанкового вооружения и может быть использовано для выверки нулевых линий прицелов с дальномером и оси ствольного оружия на танках, боевых машинах пехоты, артиллерийских системах и наземных роботизированных, в том числе автономных и/или дистанционно управляемых разведывательно-ударных комплексах военного назначения.
Наркология
Наверх