Способ изготовления полимерной композиции

Изобретение относится к полимерным композициям на основе смеси поликарбоната (ПК) и сополимера этилена с винилацетатом (СЭВА) и может быть использовано для изготовления полимерных изделий: листов, пленок, а также адгезионных материалов. Способ получения полимерной композиции из поликарбоната и сополимера этилена с винилацетатом состоит из этапов, на которых: предварительно растворяют поликарбонат и сополимер этилена с винилацетатом в органическом растворителе в первой емкости; нагревают и подают раствор поликарбоната и сополимера этилена с винилацетатом в реактор через сопло с помощью насоса мощностью 1500 Вт; одновременно подают в реактор, нагретый до 150°C, сверхкритический углекислый газ через сопло с помощью насоса мощностью 1500 Вт; осаждают полученные частицы на металлической подложке. При этом объем реактора составляет от 2 до 10 л. Технический результат заключается в получении композиции с лучшими физико-химическими свойствами в сравнении с прототипом. 1 ил., 3 табл., 8 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к полимерным композициям на основе смеси поликарбоната (ПК) и сополимера этилена с винилацетатом (СЭВА) и может быть использовано для изготовления полимерных изделий: листов, пленок, а также адгезионных материалов.

Уровень техники

Как известно, СЭВА обладает очень хорошей адгезией к различным материалам, обладает высокой морозостойкостью, но имеет невысокие прочностные характеристики и низкую теплостойкость. ПК же, наоборот, является полимером с высокими физико-механическими свойствами и высокой теплостойкостью, но обладает невысокой адгезией. Получение данной композиции позволит получить материал, обладающий свойствами обоих компонентов.

Известна полимерная композиция, содержащая, в мас.ч.: А) от 10 до 90 ароматического поликарбоната; В) от 10 до 90 одного из соединений выбранного из группы привитого сополимера, состоящей из винилароматических соединений, винилцианидов, алкилового эфира акриловой кислоты и др. (см. патент RU 2439099, C08K 5/09, C08L 67/02, 2006).

Известна композиция, состоящая из, в мас.ч., 27-94 привитого сополимера полипропилена, 5-63 поликарбоната, 1-15 алифатического полиэфира (см. патент RU 2171821, C08L 51/06, C08L 69/00, C08L 67/02, 1996).

Другая полимерная композиция содержит, мас.ч.: А) от 10 до 90 гомополикарбоната на основе бисфенола, Б) от 10 до 90 привитого сополимера из группы полиуретановых, этиленвиниацетатных, силиконовых, этиленпропиленовых каучуков, акрилатных, диеновых каучуков, В) от 1 до 20 линейного полимера с функциональными группами глицидилового эфира, Д) от 1 до 20 второго привитого полимера из полиалкилакрилата и полиорганосилоксана (см. патент RU 2458088, C08L 69/00, C08L 55/02, C08L 33/10, 2007).

Известны также смеси полиолефинов и поликарбонатов из зарубежных патентов: патент Великобритании GB 982752, где описывается смесь, состоящая из 80-99% полиэтилена и 1-20% ароматического поликарбоната; патент США US 4119607 рассматривает композицию из 40 мас. % алкениларендиенового блок-сополимера и 5-48 мас. % одного из промышленного термопласта: поликарбоната, полиэтилена или насыщенного полиэфира; патент Канады СА 705481 описывает смесь, состоящую из 80-99,5% кристаллизующего полипропилена и 0,5-20% полиарилкарбонатного полимера; патент США US 4299929 рассматривает композицию поликарбоната и акрилонитрилбутадиенстирольного пластика.

Недостатком всех перечисленных патентов является то, что композиции получены традиционным способом: смешением в расплаве, что не всегда приводит к комбинированию отдельных свойств смешиваемых материалов, так как практически все полимеры являются несовместимыми и образуют при смешении разные фазы, которые могут расслаиваться и приводить к ухудшению свойств композиций.

Известно, выбранное в качестве прототипа решение, описанное в статье «Значения пределов воздействия и критические параметры тройной смеси С02+толуол/дихлорметан, участвующей в процессе осаждения Диспергирование с улучшенным растворением за счет сверхкритических (SEDS) флюидов»

(DOI: 10.1016/j.molliq.2021.116371), в которой раскрывается приготовление полимерной композиции, включающей поликарбонат и сополимер этилена с винилацетатом причем композицию получают смешением и диспергированием по методу сверхкритического антирастворителя (SEDS).

Однако в данном решении не раскрывается использования реактора оптимального объема, что не позволяет получить более высокие физико-технические характеристики композиции.

Раскрытие изобретения.

В одном аспекте изобретения раскрыт способ получения полимерной композиции из поликарбоната и сополимера этилена с винилацетатом, содержащий этапы, на которых:

- предварительно растворяют поликарбонат и сополимер этилена с винилацетатом в органическом растворителе в первой емкости;

- нагревают и подают раствор поликарбоната и сополимера этилена с винилацетатом в реактор через сопло с помощью насоса мощностью 1500 Вт;

- одновременно подают в реактор нагретый до 150 градусов Цельсия углекислый газ через сопло с помощью насоса мощностью 1500 Вт;

- осаждают полученные частицы на металлической подложке; отличающийся тем, что объем реактора составляет от 2 до 10 литров.

Задачей изобретения является смешение и получение частиц композиции поликарбоната и сополимера этилена с винилацетатом с повышенным уровнем совместимости и более высокими физико-механическими свойствами чем в прототипе.

Сущность изобретения заключается в том, что смешение частиц композиции поликарбоната и сополимера этилена с винилацетатом осуществляют с помощью антирастворителя, для этого готовят раствор, нагревают его, сжимают, пропускают через сопло, смешивают со сверхкритическим антирастворителем, осаждают полученные частицы и собирают их, при этом в качестве растворяемого вещества выступает смесь поликарбоната и сополимера этилена с винилацетатом в соотношении от 25% до 75% соответственно, объем реактора составляет 2-10 литров, а для сбора диспергированных частиц на дне реактора устанавливается металлическая подложка.

Технический результат, достигаемый решением, заключается в получении композиции с лучшими физико-химическими свойствами в сравнении с прототипом.

Краткое описание чертежей

Фиг. 1 показывает схему установки для получения композиции.

Осуществление изобретения

В качестве объектов исследований использованы следующие полимеры: сополимер этилена с винилацетатом (СЭВА) и поликарбонат.

Принципиальная схема установки, предназначенной для диспергирования смесей полимеров по методу SEDS, представлена на фиг. 1, где

1 - баллон с СО2,

2 - емкость для раствора "исследуемое вещество органический растворитель",

3 - вентиль на линии подачи раствора в сопло,

4 - насос подачи раствора,

5 - насос подачи СО2,

6 - нагреватель раствора,

7 - нагреватель СО2,

8 - коаксиальное сопло,

9 - реактор,

10 - регулятор обратного давления,

11 - сепаратор.

Емкость 1 функционально связана по текучей среде с насосом 5, который через нагреватель 7 по линии связи по текучей среде связан с соплом 8 реактора 9. Емкость 2 функционально связана по текучей среде с насосом 4, который через нагреватель 6 по линии связи по текучей среде связан с соплом 8 реактора 9. Реактор 9 в свою очередь через регулятор 10 по текучей среде функционально связан с сепаратором 11. Все элементы установки диспергирования смесей полимеров находятся в одном корпусе.

Для подачи раствора смеси полимеров в органическом растворителе из емкости 2 и СО2 из баллона 1 используются плунжерные насосы 4 и 5. Цилиндрическая емкость из нержавеющей стали объемом 2-10 литров используется в качестве реактора 9. Давление в реакторе 9 измеряется с помощью манометра и регулируется регулятором 10 обратного давления. Впрыскивание жидкого раствора и подача сверхкритического диоксида углерода происходят одновременно через коаксиальное сопло 8. При этом, раствор полимеров в органическом растворителе подается по внутреннему отверстию, а СО2 по внешнему кольцевому зазору. Для сбора диспергированных частиц на дне реактора 9 устанавливается металлическая подложка. Оставшийся после эксперимента органический растворитель собирается в сепараторе 11.

Для измерения физико-механических свойствах композиции посредством прессования на гидравлическом прессе получали пластины 100×100 мм и толщиной 0.9-1.1 мм. Прочность при разрыве определяли в рамках требований ГОСТ 11262-76. Образец для испытания вырубался в виде лопатки с помощью специального ножа. Разрушающее напряжение при разрыве определялось как отношение усилия, при котором происходит разрушение образца, к площади поперечного сечения рабочей части образца до разрыва. Определение деформационно-прочностных свойств образца проводилось на разрывной машине. Расчетная длина образца для определения относительного удлинения составляла 20 мм. Испытание проводилось при температуре 20±2°С и относительной влажности 50±5% в соответствии с ГОСТ 12423-66.

В качестве результата испытания принималось среднее арифметическое для ряда образцов.

В результате экспериментов установлены предпочтительные режимные параметры осуществления процесса диспергирования полимерных смесей СЭВА/поликарбонат (табл. 1).

Полученные частицы имеют сферическую форму диаметром от 160 до 250 нм, зависящем от режимных параметров осуществления процесса диспергирования. При этом, при прочих равных условиях и из одной и той же массы исходной полимерной смеси после диспергирования получаются образцы различного объема. Самому низкому значению давления отвечает наиболее объемный образец с наименьшей плотностью, а самому высокому значению давления соответственно наименее объемный и с наибольшей плотностью.

При этом существенным в отношении достигаемых физико-технических свойств композиции является объем реактора. При прочих равных условиях проведения реакции увеличение объема реактора 9 по сравнению с прототипом, в котором объем реактора 1 литр, приводит к улучшению физико-технических свойств получаемой композиции.

Чем больше объем реактора 9, тем быстрее падает давление, в результате кристаллизация происходит интенсивнее, что приводит к увеличению условной прочности на разрыв и относительного удлинения при разрыве пластинки, полученной из композиции.

Максимальный объем реактора 9, при котором наблюдается улучшение физико-технических свойств зависит от производительности насосов 4 и 5. В результате экспериментов было выявлено, что при мощности насосов 4 и 5 в 1500 Вт, наилучшие показатели физико-технических свойств композиции получаются при объеме реактора от 2 до 10 л.

Для всех полимерных смесей наблюдается повышение степени структурной упорядоченности, выраженной возрастанием удельной теплоты плавления и соответственно степени кристалличности в сопоставлении с аддитивными значениями.

Несомненный интерес представляет и вопрос влияния режимных параметров осуществления процесса диспергирования по методу SEDS на величину удельной теплоты плавления смесей изучаемых полимеров. Соответствующие усредненные данные для объема реактора 2-10 литров представлены в таблице 2.

Анализ данных, представленных в таблице 2, позволяет заключить, что во всех приведенных случаях диспергирования смесей полимеров в рамках метода SEDS удельная теплота плавления превышает теплоту плавления смесей, полученных смешением в расплаве в среднем в ~2,7 раз.

Изучение физико-механических характеристик исследуемых смесей проведено на отпрессованных образцах. Результаты исследования усредненных деформационно-прочностных показателей материалов представлены в таблице 3.

Как понятно из представленных выше данных, увеличение объема реактора в сравнении с прототипом приводит к улучшению свойств получаемой композиции. Дальнейшее увеличение объема реактора без увеличения других параметров установки не приводит к дальнейшему улучшению показателей композиции.

Варианты осуществления не ограничиваются описанными здесь вариантами осуществления, специалисту в области техники на основе информации, изложенной в описании и знаний уровня техники, станут очевидны и другие варианты осуществления изобретения, не выходящие за пределы сущности и объема данного изобретения.

Элементы, упомянутые в единственном числе, не исключают множественности элементов, если отдельно не указано иное.

Под функциональной связью элементов следует понимать связь, обеспечивающую корректное взаимодействие этих элементов друг с другом и реализацию той или иной функциональности элементов. Частными примерами функциональной связи может быть связь с возможностью обмена информацией, связь с возможностью передачи электрического тока, связь с возможностью передачи механического движения, связь с возможностью передачи света, звука, электромагнитных или механических колебаний и т.д. Конкретный вид функциональной связи определяется характером взаимодействия упомянутых элементов, и, если не указано иное, обеспечивается широко известными средствами, используя широко известные в технике принципы.

Способы, раскрытые здесь, содержат один или несколько этапов или действий для достижения описанного способа. Этапы и/или действия способа могут заменять друг друга, не выходя за пределы объема формулы изобретения. Другими словами, если не определен конкретный порядок этапов или действий, порядок и/или использование конкретных этапов и/или действий может изменяться, не выходя за пределы объема формулы изобретения.

Несмотря на то, что примерные варианты осуществления были подробно описаны и показаны на сопроводительных чертежах, следует понимать, что такие варианты осуществления являются лишь иллюстративными и не предназначены ограничивать более широкое изобретение, и что данное изобретение не должно ограничиваться конкретными показанными и описанными компоновками и конструкциями, поскольку различные другие модификации могут быть очевидны специалистам в соответствующей области.

Признаки, упомянутые в различных зависимых пунктах формулы, а также реализации, раскрытые в различных частях описания, могут быть скомбинированы с достижением полезных эффектов, даже если возможность такого комбинирования не раскрыта явно.

Способ получения полимерной композиции из поликарбоната и сополимера этилена с винилацетатом, содержащий этапы, на которых:

- предварительно растворяют поликарбонат и сополимер этилена с винилацетатом в органическом растворителе в первой емкости;

- нагревают и подают раствор поликарбоната и сополимера этилена с винилацетатом в реактор через сопло с помощью насоса мощностью 1500 Вт;

- одновременно подают в реактор, нагретый до 150°C, сверхкритический углекислый газ через сопло с помощью насоса мощностью 1500 Вт;

- осаждают полученные частицы на металлической подложке,

отличающийся тем, что объем реактора составляет от 2 до 10 л.



 

Похожие патенты:

Настоящее изобретение относится к термопластичной полимерной композиции, которая может быть использована в качестве светопоглощающих и светоотражающих пленок. Термопластичная полимерная композиция содержит поликарбонат и от около 10 до около 1000 ч./млн одного или нескольких бензофураноновых стабилизаторов формулы I где R1-R5 представлены в п.

Изобретение относится к химической промышленности. Описан способ синтеза состава полимерного композиционного материала (ПКМ) для изготовления нефтепродуктовой тары (НТ), включающий приготовление состава композиции на основе поликарбоната с введением наполнителей, изготовление гранул и ПКМ для проведения физико-механических испытаний и последующую утилизацию ПКМ методом пиролиза, в качестве композиции используют состав на основе поликарбоната с наполнителями, мас.

Изобретение относится к композиции фторированного сополимера, используемой в изделиях. Композиция фторированного сополимера содержит термопластичную смолу А, имеющую напряжение сдвига (τА) от 0,11 до 0,4 МПа при измерении капиллярным реометром со скоростью сдвига 243 с-1 и при 360°С в соответствии с ASTM D3835, и фторированный эластомер В, диспергированный в термопластичной смоле А и имеющий средний размер дисперсных частиц от 0,1 до 50 мкм.

Изобретение относится к области создания композиционного материала, используемого в 3D-печати методом послойного наплавления (FDM), то есть создание трехмерных объектов за счет нанесения последовательных слоев материала, повторяющих контуры цифровой модели. Задачей настоящего изобретения является создание композиционного материала, предназначенного для 3D-печати, упрощенным технологическим процессом получения и обладающего рядом ценных физико-механических свойств.

Изобретение относится к применению одного или нескольких соединений из семейства 4-бора-3a,4a-диаза-s-индацена для получения компонента безопасности для продукта, в частности документа, где указанный компонент безопасности включает полимер, а указанное соединение (соединения) введено в указанный полимер, а также к способу обеспечения безопасности продукта, в частности документа.

Изобретение относится к технологиям получения модификатора для приготовления композиционных материалов на основе термопластичных полимеров, содержащих в своем составе углеродные, стеклянные или базальтовые волокна и углеродные нанотрубки (варианты), а также к способам получения его, и к получению композиционного материала, содержащего полученный модификатор.

Изобретение относится к химической промышленности, в частности к изготовлению армированных композиционных материалов с полимерной матрицей. Композиционный материал предназначен для использования в области электротехники, в автомобильной промышленности, на железнодорожном транспорте, в электроинструменте, в бытовой и мобильной технике для изготовления корпусных изделий, а также в медицине, ветеринарии и в других областях.

Настоящее изобретение относится к полимерным композициям на основе вторичного термопластичного сырья, предназначенным для дальнейшей переработки методом литья под давлением, на основе вторичного поликарбоната, содержащего 10-20 вес.% вторичного полиэтилентерефталата, при следующем соотношении компонентов: вторичный поликарбонат 80-90 мас.%, вторичный полиэтилентерефталат 10-20 мас.%.
Изобретение относится к композициям смесей, содержащих поликарбонат. Композиция содержит смесь полимеров, включающих: a) от 40 до 98 мас.% одного или более карбонатных полимеров; b) от 0,1 до 10 мас.% одного или более агентов для улучшения совместимости между одним или более карбонатных полимеров и одним или более олефиновых эластомеров; и с) от 0,1 до 10 мас.% одного или более олефиновых эластомеров, причем указанный олефиновый эластомер представляет собой сополимер, включающий два или более α-олефинов, и имеет кристалличность менее 30%.

Изобретение относится к области полимерных материалов и способу их получения, а именно полимерной композиции с улучшенными характеристиками мутности и светопропускания. Полимерная композиция содержит полимерную матрицу и микросферы сшитого сополимера.

Настоящее изобретение относится к полимерной композиции, подходящей для применения в качестве материала для лепки. Описан материал для лепки, содержащий по меньшей мере одну композицию, содержащую: a) один или более сополимеров винилацетата и по меньшей мере один другой сложный виниловый эфир, или по меньшей мере один гомополимер винилацетата и по меньшей мере один сополимер винилацетата и по меньшей мере один другой сложный виниловый эфир; b) по меньшей мере один пластификатор, и d) по меньшей мере один наполнитель, где компонент а) присутствует в количестве от 30 до 90% по массе от количества компонентов а) и b), а компонент b) присутствует в количестве от 10 до 70% по массе от количества компонентов а) и b).
Наверх