Способ сборки оптического волокна с корпусными деталями

Изобретение относится к волоконно-оптическим компонентам и способам их получения. Заявленный способ сборки оптического волокна с корпусными деталями волоконно-оптической сборки включает взаимное позиционирование деталей и оптического волокна, предварительный нагрев корпуса сборки и соединение их с помощью связующего крепежного вещества, причем предварительный нагрев корпуса сборки ведут до температуры, превышающей максимально допустимую температуру эксплуатации волоконно-оптической сборки, и нанесение крепежного вещества на закрепляемые участки оптического волокна и участок крепления. При этом в качестве крепежного вещества выбирают материал, отверждающийся при температуре в диапазоне от выбранной для предварительного нагрева до максимально допустимой температуры эксплуатации волоконно-оптической сборки, а после отверждения крепежного вещества температуру снижают до комнатной. Причем во избежание излома волокна или повышения потерь длину объема корпуса рассчитывают как функцию от минимально допустимого радиуса изгиба применяемого волокна и от значения коэффициента термического расширения (КТР) корпуса. Технический результат - создание способа сборки оптического волокна со стабилизированным положением оптического волокна и достижением постоянства передаваемой через оптическое волокно мощности излучения при повышенных механо-климатических нагрузках, а также упрощение процесса сборки оптического волокна.

 

Изобретение относится к волоконно-оптическим компонентам и способам их получения.

В настоящее время известно большое число способов фиксации оптического волокна относительно элементов конструкций волоконно-оптических компонентов. В то же время до сих пор фиксация оптического волокна по отношению к элементу конструкции и способы его крепления вносят наибольшие осложнения при сборке и работе изделий, особенно предназначенных для использования на подвижных объектах (например, летательных аппаратах, подводных лодках) и объектах, подверженных значительным перепадам температуры.

Известные способы фиксации оптического волокна включают предложения RU 1757345, US 4997253 крепления в двух точках опоры на плоской монтажной поверхности: сначала к ближайшей к активному элементу опоре, а потом, окончательно, ко второй опоре. В патентах RU 1757345, US 4997253 крепление производят при помощи припоя. Хотя и подбирают используемые материалы с близкими термическими коэффициентами расширения (в дальнейшем - "КТР"), но отличия КТР имеются, что приводит к изменению положения оптического волокна. Широко известно закрепление оптического волокна эпоксидными клеями (типовые технологии сборки коннекторов). В то же время остаются нерешенными проблемы закрепления оптического волокна, например, в герметичных проходных розетках, где точки крепления волокна могут быть разнесены на десятки миллиметров. Необходимость максимального облегчения подвижного объекта (например, летательного аппарата) приводит к применению в качестве корпусных материалов алюминиевых сплавов, а их КТР резко отличен от КТР кварца. Простая вклейка оптического волокна в такой корпус невозможна - перепад температур от - 60 до +150°С рвет волокно внутри корпуса, какое-либо демпфирование (например, керамического наконечника - с усилием, меньшим усилия разрушения волокна) в герметичном корпусе резко усложняет конструкцию.

Известны решения с использованием однородных материалов, например, патент на изобретение №2168191, где в качестве направляющей подложки для оптического волокна используются отрезки того же волокна, т.е. кварца, отверждение первого слоя клея ведут УФ-излучением, а в качестве второго слоя применяют высокопрочный эпоксидный клей типа ВК6. Но кварцевый корпус разъема был бы непрочен и не технологичен, он не может применяться в условиях эксплуатации подвижных объектов (удары, перегрузки и т.д.).

Наиболее близким решением можно считать применение для корпуса керамических материалов с малым отрицательным КТР (патент US 6377729) и способ создания таких материалов (патент CN 102826606).

Однако даже выравнивание КТР не в полной мере решает проблему: при повышении температуры до максимально допустимой температуры эксплуатации волоконно-оптического сборки (для летательного аппарата это 150°С) не только происходит термическое расширение сборки, способное привести к обрыву волокна, но и поскольку при такой температуре эпоксидный клей размягчается, может произойти уход волокна ниже торца наконечников, вклеенных в корпус сборки, с отверждением клея при снижении температуры. В результате - увеличение оптических потерь на стыке наконечников в случае, если сборка является волоконно-оптическим разъемом.

Цель изобретения - создание способа сборки оптического волокна со стабилизированным положением оптического волокна и достижением постоянства передаваемой через оптическое волокно мощности излучения при повышенных механо-климатических нагрузках и, кроме того, с упрощением процесса сборки оптического волокна.

Это достигается тем, что предложен способ сборки оптического волокна с корпусными деталями волоконно-оптической сборки, включающий предварительный нагрев корпуса волоконно-оптической сборки до температуры, превышающей максимально допустимую температуру эксплуатации сборки, нанесение крепежного вещества на закрепляемые участки оптического волокна и участок крепления, причем в качестве крепежного вещества выбирают материал, отверждающийся (полимеризующийся (клей) или кристаллизующийся (сплав)) при температуре в диапазоне от выбранной для предварительного нагрева до максимально допустимой температуры эксплуатации сборки, а после полимеризации (кристаллизации при предварительном снижении температуры) температуру снижают до комнатной. После охлаждения не будет ухода волокна, поскольку после остывания корпуса волокно в объеме корпуса изгибается, при нагреве вытягивается до нормальной длины. Во избежание излома волокна или повышения потерь длину объема корпуса рассчитывают, как функцию от минимально допустимого радиуса изгиба применяемого волокна и от значения КТР корпуса.

Поскольку такой способ сборки оптического волокна с корпусными деталями позволяет устранить недостатки конструкции, не прибегая к сложным технологиям получения и обработки специальных материалов с отрицательными КТР, как это происходит в прототипе, заявленные отличия являются существенными.

Предложенный способ может использоваться в системах связи, АСУТП, являясь важной частью оптических коммуникационных систем, при создании волоконно-оптических датчиков, оборудования подвижных объектов, работающих при перепадах температуры (например, летательных аппаратов и подводных лодок).

Способ сборки оптического волокна с корпусными деталями волоконно-оптической сборки, включающий взаимное позиционирование деталей и оптического волокна, предварительный нагрев корпуса сборки и соединение их с помощью связующего крепежного вещества, отличающийся тем, что предварительный нагрев корпуса сборки ведут до температуры, превышающей максимально допустимую температуру эксплуатации волоконно-оптической сборки, нанесение крепежного вещества на закрепляемые участки оптического волокна и участок крепления, причем в качестве крепежного вещества выбирают материал, отверждающийся при температуре в диапазоне от выбранной для предварительного нагрева до максимально допустимой температуры эксплуатации волоконно-оптической сборки, а после отверждения крепежного вещества температуру снижают до комнатной, причем во избежание излома волокна или повышения потерь длину объема корпуса рассчитывают как функцию от минимально допустимого радиуса изгиба применяемого волокна и от значения коэффициента термического расширения (КТР) корпуса.



 

Похожие патенты:

Изобретение относится к технической области кабелей, в частности к кабелю, который делается из синтетического полимерного материала, является устойчивым к раздавливающим усилиям, демонстрирует высокую жесткость и прочность на разрыв и который включает в себя провода для передачи сигналов данных и/или силовые провода.

Настоящее изобретение относится к оптическому волокну. Оптическое волокно содержит стеклянное волокно, содержащее сердцевину и оболочку.

Изобретение относится к области связи и, в частности, к обработке топологии оптической сети. Техническим результатом является повышение эффективности управления устройством оптической распределительной сети (ODN) за счет того, что ресурсы в оптической распределительной сети сортируются просто, быстро, автоматически и надежно.

Изобретение относится к оптическому волокну. Заявленное оптическое волокно содержит стеклянное волокно, содержащее сердцевину и оболочку; первичный слой смолы, находящийся в контакте со стеклянным волокном и покрывающий стеклянное волокно; и вторичный слой смолы, покрывающий первичный слой смолы, в котором модуль Юнга первичного слоя смолы составляет 0,04 МПа или более и 1,0 МПа или менее при 23°С±2°С и в котором вторичный слой смолы состоит из отвержденного продукта смоляной композиции, содержащей основную смолу, включающую олигоуретан(мет)акрилат, мономер и инициатор фотополимеризации; и гидрофобные частицы неорганического оксида.

Изобретение относится к кабельной технике, а именно: к конструкциям отдельных элементов и конструкциям волоконно-оптических кабелей в целом, предназначенным для применения в системах управления, бортовой связи и передачи информации в морских и подводных аппаратах, в различных моделях летательных и космических аппаратов, а также технологии их изготовления.

Изобретение относится к кабельной технике, а именно: к конструкциям отдельных элементов и конструкциям волоконно-оптических кабелей в целом, предназначенным для применения в системах управления, бортовой связи и передачи информации в морских и подводных аппаратах, в различных моделях летательных и космических аппаратов, а также технологии их изготовления.

Изобретение относится к волоконно-оптическим линиям связи и может быть использовано для обеспечения герметичного пропуска волоконно-оптических кабелей через стены в загрязненную зону, в частности, во внутреннее пространство герметичного подземного сооружения, предназначенного для проведения взрывных экспериментов.

Изобретение относится к системам и способам защиты оптического волокна внутри скважинного кабеля, сейсмического кабеля или другого кабеля при одновременном снижении потери качества сигнала на оптическом волокне. Заявленный кабель содержит: кабельный сердечник и совокупность армирующих проволочных несущих элементов, которые окружают кабельный сердечник.

Изобретение относится к оптическому волокну. Оптическое волокно содержит стеклянное волокно, включающее сердцевину и оболочку, первичный слой смолы, находящийся в контакте со стеклянным волокном и покрывающий стеклянное волокно, и вторичный слой смолы, покрывающий первичный слой смолы.

Изобретение относится к оптическому волокну. Оптическое волокно содержит стеклянное волокно, включающее сердцевину и оболочку, первичный слой смолы, находящийся в контакте со стеклянным волокном и покрывающий стеклянное волокно, и вторичный слой смолы, покрывающий первичный слой смолы.
Наверх