Способ контроля работоспособности бортового приемоиндикатора спутниковой радионавигационной системы




Владельцы патента RU 2791603:

Федеральное государственное казенное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) (RU)

Изобретение относится к области радиотехники и может быть использовано при создании и модернизации средств контроля работоспособности бортового приемоиндикатора спутниковой радионавигационной системы (СРНС). Техническим результатом изобретения является повышение вероятности правильного контроля работоспособности бортового приемоиндикатора СРНС. В заявленном способе используемая в процессе контроля работоспособности бортового приемоиндикатора СРНС измеренная радиовысотомером высота летательного аппарата (ЛА) корректируется с учетом тангажа и крена ЛА. При этом корректировка по тангажу осуществляется только при условии, если значение тангажа превышает половину ширины диаграммы направленности антенны (ШДНА) радиовысотомера, корректировка по крену осуществляется только при условии, если значение крена превышает половину ШДНА радиовысотомера. Это позволяет снизить зависимость формируемого решения о неработоспособности бортового приемоиндикатора СРНС от влияния углового положения ЛА и, как следствие, повысить вероятность правильного контроля работоспособности борового приемоиндикатора СРНС в целом. 1 ил.

 

Изобретение относится к области радиотехники и может быть использовано при создании и модернизации средств контроля работоспособности бортового приемоиндикатора спутниковой радионавигационной системы (СРНС).

Наиболее близким по технической сущности к заявляемому способу (прототипом) является способ контроля работоспособности бортового приемоиндикатора СРНС (см., например, патент на изобретение №2254591 от 20.06.2005 г.), сущность которого заключается в том, что измеряют высоту hPB полета летательного аппарата (ЛА) с помощью установленного на нем радиовысотомера, определяют высоту hP местности, над которой находится ЛА в момент измерения высоты, используя для этой цели данные о плановых координатах с выхода приемоиндикатора СРНС и цифровую карту местности (ЦКМ), вычисляют абсолютную высоту hA=hPB+hP, сравнивают ее с высотой hПИ, снимаемой с выхода приемоиндикатора СРНС, и формируют сигнал его работоспособности, если меньше устанавливаемого порога П.

К недостаткам прототипа относится снижение вероятности правильного контроля работоспособности бортового приемоиндикатора СРНС в условиях, когда значения крена или (и) тангажа превышают половину ширины диаграммы направленности антенны (ШДНА) радиовысотомера. Это объясняется следующим. Измеряемая радиовысотомером высота hPB соответствует расстоянию между ЛА и характерным участком подстилающей поверхности (ХУПП), представляющим собой ближайший к ЛА участок подстилающей поверхности от которого сигнал радиовысотомера отражается с достаточной для его приема мощностью. В условиях, когда значения крена и тангажа ЛА меньше половины ШДНА радиовысотомера, ХУПП совпадает с находящейся непосредственно под ЛА точкой и измеряемая радиовысотомером высота hPB в среднем соответствуют относительной высоте h0 ЛА (под относительной высотой h0 ЛА в данном случае понимается расстояние между ЛА и точкой, находящейся на подстилающей поверхности непосредственно под ЛА). В условиях, когда значения крена или (и) тангажа ЛА превышают значение половины ШДНА радиовысотомера, ХУПП сдвигается в сторону от точки, находящейся непосредственно под ЛА, что приводит к увеличению измеряемой радиовысотомером высоты hPB по сравнению с относительной высотой h0, то есть радиовысотомер в этих условиях формирует некорректные измерения hPB. При этом, чем больше значения крена или (и) тангажа, тем больше несоответствие между величинами hPB и h0, тем больше вероятность ложного решения о неработоспособности бортового приемоиндикатора СРНС, тем ниже вероятность правильного контроля его работоспособности в целом.

Таким образом, формируемое в соответствии с прототипом решение о неработоспособности борового приемоиндикатора СРНС существенно зависит от углового положения ЛА в условиях, когда значения крена или (и) тангажа превышают половину ширины диаграммы направленности антенны (ШДНА) радиовысотомера. При этом, чем больше значения крена или (и) тангажа, тем ниже вероятность правильного контроля работоспособности бортового приемоиндикатора СРНС.

Техническим результатом изобретения является повышение вероятности правильного контроля работоспособности бортового приемоиндикатора СРНС.

Указанный результат достигается тем, что в известном способе дополнительно с использованием датчика углового положения (ДУП) измеряют значения тангажа и крена γi ЛА на протяжении его полета, определяют значение индикатора необходимости корректировки величины hPBi по тангажу, для этого сравнивают значение тангажа с половиной ШДНА радиовысотомера, если значение тангажа больше половины ШДНА радиовысотомера, то формируют решение о необходимости корректировки величины hPBi по тангажу, в противном случае формируют решение об отсутствии необходимости корректировки величины hPBi по тангажу, определяют значение индикатора χγi необходимости корректировки величины hPBi по крену, для этого сравнивают значение крена γi с половиной ШДНА радиовысотомера, если значение крена γi больше половины ШДНА радиовысотомера, то принимают решение χγi=1 о необходимости корректировки величины hPBi по крену, в противном случае принимают решение xγi=0 об отсутствии необходимости корректировки величины hPBi по крену, с использованием величин определяют скорректированное значение относительной высоты полета ЛА, с использованием величин и hPi определяют скорректированное значение абсолютной высоты полета ЛА, определяют модуль Mi разности между величинами и , сравнивают модуль Mi с заданным допустимым отклонением Δh, если модуль Mi больше заданного допустимого отклонения Δh, то формируют решение о неработоспособности бортового приемоиндикатора СРНС, в противном случае формируют решение о работоспособности приемоиндикатора СРНС.

Сущность изобретения заключается в том, что используемая в процессе контроля работоспособности бортового приемоиндикатора СРНС измеренная радиовысотомером высота ЛА корректируется с учетом тангажа и крена ЛА. При этом корректировка по тангажу осуществляется только при условии, если значение тангажа превышает половину ШДНА радиовысотомера, корректировка по крену осуществляется только при условии, если значение крена превышает половину ШДНА радиовысотомера. Это позволяет снизить зависимость формируемого решения о неработоспособности бортового приемоиндикатора СРНС от влияния углового положения ЛА и, как следствие, повысить вероятность правильного контроля работоспособности борового приемоиндикатора СРНС в целом.

Данный способ включает в себя следующие этапы:

1. Измерение значений высоты полета ЛА с использованием бортового приемоиндикатора СРНС на протяжении полета ЛА, где - число контрольных моментов времени на протяжении полета ЛА;

2. Измерение координат xi и yi ЛА в горизонтальной плоскости с использованием бортового приемоиндикатора СРНС на протяжении полета ЛА.

3. Измерение текущих значений hPBi относительной высоты полета ЛА с использованием радиовысотомера на протяжении полета ЛА;

4. Определение значений hPi высоты рельефа местности, соответствующей координатам xi и yi, с использованием ЦКМ;

5. Измерение значений тангажа и крена γi ЛА с использованием датчика углового положения (ДУП) ЛА;

6. Определение значения индикатора необходимости корректировки величины hPBi по тангажу в соответствии с выражением

где Δθ - ШДНА радиовысотомера; - необходимость корректировки величины hPBi по тангажу имеется, - необходимость корректировки относительной высоты полета ЛА по тангажу отсутствует.

В соответствии с выражением (1) индикатор принимает значение 1, то есть принимается решение о необходимости корректировки величины hPBi по тангажу, только в случае, если значение тангажа превышает половину ШДНА радиовысотомера.

7. Определение значения индикатора необходимости корректировки величины hPBi по крену в соответствии с выражением

где xγi=1 - имеется необходимость корректировки величины hPBi по крену, χγi=0 - необходимость корректировки относительной высоты полета ЛА по крену отсутствует.

В соответствии с выражением (2) индикатор xγi принимает значение 1, то есть принимается решение о необходимости корректировки величины hPBi по крену, только в случае, если значение крена превышает половину ШДНА радиовысотомера.

8. Определение скорректированного значения относительной высоты полета ЛА в соответствии с выражением

9. Определение скорректированного значения абсолютной высоты полета ЛА

10. Определение значения модуля Mi разности между величинами и в соответствии с выражением

11. Формирование решения о работоспособности или неработоспособности приемоиндикатора СРНС в соответствии с выражением

где Δh - заданное допустимое отклонение между величинами .

В соответствии с выражением (6) решение q=0 о неработоспособности бортового приемоиндикатора СРНС формируется в том, случае, если модуль разности величин превышает заданное допустимое отклонение Δh, в противном случае формируется решение q=1 о работоспособности бортового приемоиндикатора СРНС.

Данный способ может быть реализован, например, с помощью комплекса устройств и систем, структурная схема которого приведена на фигуре, где обозначено: 1 - бортовой приемоиндикатор СРНС; 2 - радиовысотомер; 3 - блок управления и обработки информации (БУОИ); 4 - датчик углового положения (ДУП); 5 - цифровая карта местности (ЦКМ).

Бортовой приемоиндикатор СРНС 1 предназначен для формирования навигационных измерений, в том числе значений hПИi высоты полета ЛА и его координат xi и yi в горизонтальной плоскости на протяжении полета ЛА. Радиовысотомер 2 предназначен для измерения текущих значений hPBi относительной высоты полета ЛА на протяжении его полета. БУОИ 3 предназначен для управления совместной работой элементов комплекса и для обработки информации. ДУП 4 предназначен для измерения значений тангажа и крена γi ЛА на протяжении его полета. ЦКМ 5 предназначена для хранения и своевременной выдачи значений hPi высоты рельефа местности (каждое отдельное значение hPi соответствует паре координат xi и yi).

Комплекс работает следующим образом. БУОИ 3 управляет совместной работой элементов комплекса. Бортовой приемоиндикатор 1 формирует навигационные измерения, в том числе значения hПИi высоты полета ЛА и его координаты xi и yi в горизонтальной плоскости на протяжении полета ЛА. Радиовысотомер 2 измеряет текущие значения hPBi относительной высоты полета ЛА на протяжении его полета. ДУП 4 измеряет значения тангажа и крена γi ЛА на протяжении его полета. Под воздействием управляющих сигналов БУОИ 3 информация с выходов бортового приемоиндикатора СРНС 1, радиовысотомера 2, ДУП 4 и ЦКМ 5 поступает на БУОИ 3 в i-е контрольные моменты времени. При этом с выхода бортового приемоиндикатора СРНС 1 на вход БУОИ 3 поступает значения hПИi высоты полета ЛА и его координаты xi и yi в горизонтальной плоскости. С выхода радиовысотомера 2 на вход БУОИ 3 поступают текущие значения hPBi относительной высоты полета ЛА. С выхода ДУП 4 на вход БУОИ 3 поступают значения тангажа и крена γi ЛА. С выхода ЦКМ 5 на вход БУОИ 3 поступают соответствующие паре координат xi и γi значения hPi высоты рельефа местности. БУОИ 3 обрабатывает поступающую информацию в соответствии с выражениями (1) - (5) и формирует решение о работоспособности или неработоспособности бортового приемоиндикатора СРНС в соответствии с выражением (6).

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений не известен способ контроля работоспособности бортового приемоиндикатора СРНС, сущность которого заключается в том, что используемая в процессе контроля работоспособности бортового приемоиндикатора СРНС измеренная радиовысотомером высота ЛА корректируется с учетом тангажа и крена ЛА. При этом корректировка по тангажу осуществляется только при условии, если значение тангажа превышает половину ШДНА радиовысотомера, корректировка по крену осуществляется только при условии, если значение крена превышает половину ШДНА радиовысотомера.

Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что если в процессе контроля работоспособности бортового приемоиндикатора СРНС использовать скорректированную с учетом тангажа и крена ЛА измеренную радиовысотомером высоту ЛА, при этом корректировку по тангажу осуществлять только при условии, если значение тангажа превышает половину ШДНА радиовысотомера, корректировку по крену осуществлять только при условии, если значение крена превышает половину ШДНА радиовысотомера, то это приведет к повышению вероятности правильного контроля работоспособности бортового приемоиндикатора СРНС.

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы элементы, широко распространенные в области электронной и электротехники.

Способ контроля работоспособности бортового приемоиндикатора спутниковой радионавигационной системы (СРНС), заключающийся в том, что с использованием бортового приемоиндикатора СРНС измеряют значения высоты полета летательного аппарата (ЛА) и его координаты xi и yi в горизонтальной плоскости на протяжении полета ЛА, где - число контрольных моментов времени на протяжении полета ЛА, с использованием радиовысотомера измеряют текущие значения относительной высоты полета ЛА на протяжении его полета, с использованием цифровой карты местности определяют соответствующие координатам xi и yi значения hPi высоты рельефа местности, отличающийся тем, что дополнительно с использованием датчика углового положения измеряют значения тангажа и крена γi ЛА на протяжении его полета, определяют значение индикатора необходимости корректировки величины по тангажу, для этого сравнивают значение тангажа с половиной ширины диаграммы направленности антенны (ШДНА) радиовысотомера, если значение тангажа больше половины ШДНА радиовысотомера, то формируют решение о необходимости корректировки величины по тангажу, в противном случае формируют решение об отсутствии необходимости корректировки величины по тангажу, определяют значение индикатора необходимости корректировки величины по крену, для этого сравнивают значение крена γi с половиной ШДНА радиовысотомера, если значение крена γi больше половины ШДНА радиовысотомера, то принимают решение о необходимости корректировки величины по крену, в противном случае принимают решение об отсутствии необходимости корректировки величины по крену, с использованием величин определяют скорректированное значение относительной высоты полета ЛА, с использованием величин и hPi определяют скорректированное значение абсолютной высоты полета ЛА, определяют модуль Мi разности между величинами и , сравнивают модуль Mi с заданным допустимым отклонением Δh, если модуль Мi больше заданного допустимого отклонения Δh, то формируют решение о неработоспособности бортового приемоиндикатора СРНС, в противном случае формируют решение о работоспособности приемоиндикатора СРНС.



 

Похожие патенты:

Группа изобретений относится к системе управления воздушным движением и способу обработки одновременной передачи вызовов. Система управления содержит по меньшей мере две бортовые радиостанции и наземную систему, включающую в себя пульт диспетчера и по меньшей мере одну наземную радиостанцию.

Группа изобретений относится к способу и устройству для управления потоком взлетов и посадок летательных аппаратов (ЛА). Для управления потоком взлетов и посадок предварительно задают определенные параметры посадки, связанные с особенностями данного аэропорта, а также с типами и характеристиками приземляющихся ЛА, задают критерии оптимизации потока ЛА, принимают плановую информацию и информацию наблюдения, захватывают ЛА на сопровождение, вычисляют прогнозируемые параметры прибытия ЛА, передают информацию диспетчеру на утверждение или изменение, передают утвержденную диспетчером информацию потребителям.

Изобретение относится к способу мониторинга воздушного движения беспилотных летательных аппаратов на основе интеллектуальной mesh-сети. Для мониторинга воздушного движения производят обмен информацией на основе распределенной, одноранговой, самоорганизующейся сети с ячеистой топологией, где БЛА рассматриваются как узлы сети и могут выступать ретрансляторами, передавая информацию другим участникам движения или в наземный пункт управления и наблюдения.

Группа изобретений относится к области навигации ЛА и предназначена для управления воздушным движением и обеспечения безопасности полетов путем использования сигналов автоматического зависимого наблюдения на борту ЛА. Задают аэронавигационную информацию об аэродроме, координаты точек приема сигналов, максимально допустимые разности между оцененными координатами ЛА и принятыми, вычисленной путевой скоростью и принятой.

Изобретение относится к стояночному комплексу аэропорта, выполненному с возможностью содействия пилоту приближающегося воздушного судна в маневрировании воздушным судном к положению парковки на месте стоянки. Техническим результатом изобретения является обеспечение безопасной и надежной постановки воздушных судов на места стоянки в аэропортах.

Изобретение относится к способу децентрализованного управления распределенной обобщенной сетью подвижных роботизированные средств и стыковочных станций. Для децентрализованного управления осуществляют децентрализованное взаимодействие между каждой парой, образованной подвижным роботизированным средством, осуществляющим движение, и стыковочной станцией.

Изобретение относится к способу управления полетами и посадкой воздушных судов (ВС) в ближней аэродромной зоне при помощи посадочного радиолокатора (ПРЛ). Техническим результатом изобретения является повышение точности определения местоположения ВС в пространстве при управлении полетами и посадкой ВС при помощи посадочного радиолокатора, и повышение достоверности обнаружения и сопровождения ВС, выполняющих посадку в соответствии с пространственными параметрами плановой линии глиссады снижения в пределах заданных угловых или линейных отклонений по курсу и глиссаде.

Изобретение относится к способу определения местоположения потерявшегося человека с мобильным устройством. Для определения местоположения потерявшегося человека используют предварительно вычисленное определенным образом число N беспилотных летательных аппаратов (БПЛА), каждый из которых снабжен портативным имитатором базовой станции, модулем глобального позиционирования с круговой антенной и возможностью триангуляции источника сигнала, приемопередатчиком для организации беспроводной связи между БПЛА и сети БПЛА с наземным блоком управления поисково-спасательного пункта (ПСП), при этом разворачивают ПСП в районе, максимально приближенном к месту, в котором предположительно потерялся человек, запускают N БПЛА, осуществляют облет зоны поиска определенным образом, производят поиск сигналов абонентского терминала потерявшегося человека каждым БПЛА, измеряют мощность сигнала для определения близости к цели поиска, дают команды для перемещения в зону поиска двум соседним БПЛА, с помощью которых определяют координаты местоположения цели поиска, которые затем передают в ПСП.

Изобретение относится к области управления полетами и посадкой воздушных судов (ВС) в ближней аэродромной зоне. Техническим результатом изобретения является повышение точности радиолокационного измерения сферических координат воздушного судна в посадочном радиолокаторе, что улучшает достоверность обнаружения воздушного судна при работе радиолокатора в штатном режиме управления полетами и посадкой воздушного судна.

Изобретение относится к области управления полетами и посадкой воздушных судов (ВС) в аэродромной зоне. Технический результат – повышение достоверности обнаружения воздушных судов в ближней аэродромной зоне и зоне посадки радиолокационной системы посадки (РСП), а также обеспечение возможности передачи данных о параметрах положения и движения ВС на командный диспетчерский пункт (КДП) при различных вариантах работоспособности составных частей РСП.

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Техническим результатом изобретения является повышение вероятности правильной идентификации воздушных целей в условиях многоцелевой обстановки.
Наверх