Система комбинированной силовой установки

Изобретение относится к области машиностроения, в частности к силовым установкам, работающим совместно с двигателем внутреннего сгорания. Технический результат - повышение эффективности работы системы, повышение ее КПД с использованием энергии отработанных газов, при простоте конструкции. Предложенная система комбинированной силовой установки включает турбокомпрессор 1 и комбинированный двигатель 2, состоящий из рабочей части 3, работающей в четырехтактном режиме, пневматической части 4, работающей в двухтактном режиме и компрессорной части 5, работающей в двухтактном режиме, каждая из которых имеет цилиндропоршневую группу, а также головку блока цилиндра с системой впускного и выпускного коллекторов с клапанным механизмом. Рабочая часть 3, пневматическая часть 4 и компрессорная часть 5 объединены системой трубопроводов и общим коленчатым валом 6, при этом на коленчатом валу 6 между рабочей частью 3 и пневматической частью 4 установлен механизм изменения передаточного числа 7. Выход турбокомпрессора 1 по трубопроводу, нагнетающий воздух, связан со впуском компрессорной части 5, выпуск которой связан с впуском рабочей части 3. Выход рабочей части 3, содержащей выхлопные газы, связан с впуском пневматической части 4, а выход пневматической части 4 связан со входом турбокомпрессора 1. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области машиностроения, в частности к силовым установкам, работающим совместно с двигателем внутреннего сгорания, которые могут быть использованы в качестве замены электродвигателей для привода различных машин и механизмов.

В настоящее время, конструкция двигателей внутреннего сгорания не претерпевает существенных изменений и достигла пика своего эволюционного развития, однако задачи по повышению мощности, КПД, эффективности работы устройств на их основе, стоят как никогда остро, в связи с постоянным поднятием цен на топливо и его образующемся дефиците во многих районах на планете.

Известна силовая установка, содержащая двигатель внутреннего сгорания с системами впуска наддувочного воздуха и выпуска отработавших газов, турбокомпрессор первой ступени, воздушный теплообменник первой ступени, механический компрессор второй ступени с приводным электродвигателем и систему автоматического регулирования параметров наддува с устройствами регулирования компрессоров, размещенными в байпасах, (см. патент US 7246490, 24.07.2007).

Электрический привод в данном известном решении выполнен со сложной автоматической регулировкой параметров наддува, при этом средства поддержания теплового состояния (температуры) и давления воздуха во второй ступени выполнены только путем поддержания динамики вращения механического компрессора. Кроме того, данная установка имеет низкую эффективность и КПД за счет неполного задействия энергии отработанных газов, имеет сложную конструкцию.

В качестве наиболее близкого аналога (прототипа) для заявленной системы является решение, по патенту RU 2600842 С2, 27.10.2016, где двигательная установка, содержит:

- двигатель внутреннего сгорания (ДВС), имеющий впускную линию и выпускную линию,

- компрессор низкого давления и компрессор высокого давления, установленные в упомянутой впускной линии по ходу потока воздуха,

- турбину высокого давления и турбину низкого давления, установленные в упомянутой выпускной линии по ходу потока газов,

- первый перепускной механизм для обхода упомянутого компрессора высокого давления, упомянутая турбина высокого давления соединена с валом упомянутого компрессора низкого давления, а упомянутый компрессор высокого давления приводится в действие упомянутой турбиной низкого давления и/или упомянутым двигателем.

Данная установка также имеет сложную конструкцию, низкую эффективность и КПД за счет неполного задействия энергии отработанных газов.

Целью заявленного изобретения является устранение недостатков известных комбинированных силовых систем.

В основу предложенного изобретения поставлена задача доработки конструкции комбинированной силовой установки, устраняющую известные недостатки аналогов.

Техническим результатом является повышение эффективности работы системы, повышение ее КПД с использованием энергии отработанных газов, при простоте конструкции.

Данный результат достигается тем, что система комбинированной силовой установки включает турбокомпрессор и комбинированный двигатель, состоящий из рабочей части, работающей в четырехтактном режиме, пневматической части, работающей в двухтактном режиме, и компрессорной части, работающей в двухтактном режиме, каждая из которых имеет цилиндро-поршневую группу (ЦПГ), а также головку блока цилиндра (ГБЦ) с системой впускного (впуск) и выпускного (выпуск) коллектора с клапанным механизмом,

рабочая часть, пневматическая часть, и компрессорная часть, объединены системой трубопроводов и общим коленчатым валом, при этом на коленчатом валу между рабочей частью и пневматической частью установлен механизм изменения передаточного числа,

при этом выход турбокомпрессора по трубопроводу, нагнетающий воздух, связан с впуском компрессорной части, а его выпуск связан с впуском рабочей части,

выход рабочей части, содержащей выхлопные газы, связан с впуском пневматической части, а выход пневматической части, связан с входом турбокомпрессора.

Механизм изменения передаточного числа выполнен в виде коробки передач.

На конце коленчатого вала расположен выходной вал.

Далее, принцип работы устройства будет описан с учетом прилагаемой схемы по фиг. 1, где изображена предпочтительная система комбинированной силовой установки, где

1 - турбокомпрессор;

2 - комбинированный двигатель;

3 - рабочая часть;

4 - пневматическая часть;

5 - компрессорная часть;

6 - коленчатый вал;

7 - механизм изменения передаточного числа;

8 - система впускного коллектора (впуск);

9 - система выпускного коллектора (выпуск);

10 - выходной вал;

Система комбинированной силовой установки включает турбокомпрессор 1. Турбокомпрессор 1 включает вход и выход (на чертеже не обозначены). Турбокомпрессор служит для забора воздуха и направление его в соответствующий узел комбинированного двигателя 2.

Комбинированный двигатель 2 состоит из рабочей части 3, работающей в четырехтактном режиме, пневматической части 4, работающей в двухтактном режиме, и компрессорной части 5, работающей в двухтактном режиме, каждая из которых имеет цилиндро-поршневую группу (ЦПГ), а также головку блока цилиндра (ГБЦ) с системой впускного (впуск) 8 и выпускного 9 (выпуск) коллектора с клапанным механизмом.

Рабочая часть 3, комбинированного двигателя 2 представляет собой двигатель внутреннего сгорания со всеми его конструктивными составляющими. Рабочая часть 3 в своей основе включает ЦПГ, а также ГБЦ с системой впуска 8 и выпуска 9 с клапанными механизмами. Рабочий объем "V" рабочей части 3 выбирается в соответствии с рабочими объемами компрессорной и пневматической частей. Подробно же раскрывать конструкцию рабочей части 3 нет необходимости, поскольку конструкция рабочей части 3, выполненной как двигатель внутреннего сгорания, как таковой, не является объемом охраны данной заявки.

Пневматическая часть 4, представляет собой блок, работающий в двухтактном режиме и имеющий в своей основе ЦПГ, а также ГБЦ с системой впуска 8 и выпуска 9 воздуха/газов с соответствующими впускными и выпускными клапанными механизмами (клапаны-тарельчатые).

Рабочий объем пневматической части 4 "Vп", предпочтительно, рассчитывается по формуле

Vп=3V, где

V - рабочий объем рабочей части 3;

Компрессорная часть 5 также выполнена в виде блока воздушного компрессора, работающего в двухтактном режиме и имеющего в своей основе ЦПГ, а также ГБЦ с системой впуска 8 и выпуска 9 с соответствующими впускными и выпускными клапанными механизмами. Впускные клапаны - любые, например, тарельчатые, выпускные, например, лепестковые или пластинчатые, предназначенные для работы с воздухом/газом.

Рабочий объем компрессорной части 5 "Vк" предпочтительно рассчитывается по формуле:

Vк=V, где

V - рабочий объем рабочей части 3;

Рабочая часть 3, пневматическая часть 4 и компрессорная часть 5 комбинированного двигателя 2 объединены системой трубопроводов и общим, связанным в единый модуль, коленчатым валом 6. Коленчатый вал 6 проходит через все три части 3, 4, 5 комбинированного двигателя 2. На конце коленчатого вала 6 расположен выходной вал 10. Данный вал 10, на выходе, может быть установлен, например, после КПП, вариатора и других механизмов изменения скорости вращения. На коленчатом валу 6 между рабочей частью 3 и пневматической частью 4 установлен механизм изменения передаточного числа 7. Механизм изменения передаточного числа 7 выполнен, как правило, в виде коробки передач. Передаточное число подбирается исходя из скорости вращения коленчатого вала 6 в об/мин. Например, при передаточном соотношении 3,3, при вращении коленчатого вала 6, например, со скоростью 2800 об/мин, скорость вращения коленчатого вала 6 в пневматической части 4 и компрессорной части 5 будет равна 900 об/мин, что обеспечит наибольшее КПД, работоспособность всей системы в целом, при определенных соотношениях рабочих объемов, описанных ранее, в рабочей части 3, пневматической части 4, и компрессорной части 5 комбинированного двигателя 2.

Система трубопроводов комбинированной силовой установки с двигателем внутреннего сгорания, связана следующим образом.

Выход турбокомпрессора 1 по трубопроводу связан с впуском 8 компрессорной части 5 и нагнетает воздух в компрессорную часть, для осуществления ее работы. При этом выпуск 9 компрессорной части 5 связан с впуском 8 рабочей части 3 и передает на нее нагнетенный воздух под определенным давлением для работы рабочей части 3 комбинированного двигателя 2.

На выходе из рабочей части 3, содержащей выхлопные отработанные газы, трубопровод связан с впуском 8 пневматической части 4, для передачи отработанных газов и осуществления работы пневматической части 4 комбинированного двигателя 2. При этом выход 9 пневматической части 4, связан с входом турбокомпрессора 1 и передает на него воздушную смесь/газы, для раскручивания его крыльчатки и для осуществления (ускорения/упрощения) его работы.

Пример 1

Система комбинированной силовой установки включает турбокомпрессор 1 и комбинированный двигатель 2;

Рабочий объем рабочей части 3 - V=6,0 литров, скорость вращения коленчатого вала п=2750 об/мин;

Рабочий объем пневматической части 4 Vп=18,0 литров, скорость вращения коленчатого вала п=810 об/мин;

Рабочий объем компрессорной части 5 Vк=6,0 литров, скорость вращения коленчатого вала п=810 об/мин;

Рабочая часть 3, пневматическая часть 4 и компрессорная часть 5, объединены системой трубопроводов и общим коленчатым валом 6;

На коленчатом валу 6 между рабочей частью 3 и пневматической частью 4 установлен редуктор 7 с передаточным соотношением i=3.4;

На конце коленчатого вала 6 расположен выходной вал 10.

Система работает в штатном режиме при взаимодействии и функционировании ее узлов, обеспечивая достижение заявленного результата.

Пример 2

Система комбинированной силовой установки включает турбокомпрессор 1 и комбинированный двигатель 2;

Рабочий объем рабочей части 3 - V=6,5 литров, скорость вращения коленчатого вала п=3000 об/мин;

Рабочий объем пневматической части 4 - Vп=19,5 литров, скорость вращения коленчатого вала п=900 об/мин;

Рабочий объем компрессорной части 5 - Vк=6.5 литров, скорость вращения коленчатого вала п=900 об/мин;

Рабочая часть 3, пневматическая часть 4 и компрессорная часть 5, объединены системой трубопроводов и общим коленчатым валом 6;

На коленчатом валу 6 между рабочей частью 3 и пневматической частью 4 установлена коробка передач 7 с передаточным соотношением i=3.3;

На конце коленчатого вала 6 расположена коробка передач с выходным валом 10.

Система работает в штатном режиме при взаимодействии и функционировании ее узлов, обеспечивая достижение заявленного результата.

Таким образом, созданная модернизированная система комбинированной силовой установки за счет конструкции комбинированно двигателя, состоящего из трех взаимосвязанных узлов 3, 4, 5, системы трубопроводов и общим, связанным в единый модуль коленчатым валом 6, которые задействуют энергию выхлопных газов, а также энергию воздуха в компрессорной 5 и пневматической части 4, обеспечивает повышение эффективности работы системы, повышение ее КПД с использованием энергии отработанных газов, при простоте ее конструкции.

1. Система комбинированной силовой установки, характеризующаяся тем, что включает турбокомпрессор и комбинированный двигатель, состоящий из рабочей части, работающей в четырехтактном режиме, пневматической части, работающей в двухтактном режиме, и компрессорной части, работающей в двухтактном режиме, каждая из которых имеет цилиндропоршневую группу (ЦПГ), а также головку блока цилиндра (ГБЦ) с системой впускного и выпускного коллекторов с клапанным механизмом,

рабочая часть, пневматическая часть и компрессорная часть объединены системой трубопроводов и общим коленчатым валом, при этом на коленчатом валу между рабочей частью и пневматической частью установлен механизм изменения передаточного числа,

при этом выход турбокомпрессора нагнетающего воздух по трубопроводу в компрессорную часть связан с впуском компрессорной части, а выпуск компрессорной части связан с впуском рабочей части,

выход рабочей части, содержащей выхлопные газы, связан с впуском пневматической части, а выход пневматической части связан с входом турбокомпрессора,

при этом рабочий объем рабочей части равен рабочему объему компрессорной части и рабочий объем пневматической части в три раза больше рабочего объема рабочей части.

2. Система комбинированной силовой установки по п. 1, характеризующаяся тем, что механизм изменения передаточного числа выполнен в виде коробки передач.

3. Система комбинированной силовой установки по п. 1, характеризующаяся тем, что на конце коленчатого вала расположен выходной вал.



 

Похожие патенты:
Изобретение относится к области космической техники, а более конкретно к космическим аппаратам (КА). КА содержит систему терморегулирования с приборами для отбора, подвода и сброса тепла.

Изобретение относится к энергомашиностроению. Приводной блок (1) для автомобиля содержит силовую установку, которая содержит двигатель (2) внутреннего сгорания (ДВС), выхлопной тракт (4), через который обеспечена возможность отвода отработанного газа (19) из ДВС (2).

Изобретение может быть использовано в системах утилизации тепловой энергии на базе органического цикла Ренкина. Вспомогательная энергетическая установка для дизель-генераторов включает в себя паротурбинный контур, содержащий секции, в каждой из которых имеется турбина, расположенная на одном валу (6) с электрогенератором (7).

Группа изобретений относится к двигателестроению. Техническим результатом является увеличение мощности и улучшение экологических показателей четырехтактного дизельного двигателя за счет организации интенсивного смесеобразования и увеличения продолжительности сгорания.

Изобретение относится к транспортным средствам. Транспортное средство содержит двигатель внутреннего сгорания, детандер и генератор.

Термоэлектрическое устройство для выработки электроэнергии (1А) включает в себя термоэлектрический элемент (2), имеющий первую сторону, предусмотренную снаружи нагревательного устройства (3), и вторую сторону, предусмотренную на охлаждающем устройстве (4), и теплопередающую трубу (6), расположенную в канале (5), в котором протекает высокотемпературный теплоноситель.

Изобретение может быть использовано в двигателях внутреннего сгорания транспортных средств. Способ для двигателя заключается в том, что во время холодного пуска направляют отработавшие газы сначала через трехкомпонентный каталитический нейтрализатор (120), затем через нейтрализатор (118) на днище кузова, затем через перепускной канал (123) отработавших газов с теплообменником (122), а затем через турбину (116).

Группа изобретений относится к двигателестроению. Техническим результатом является увеличение мощности и улучшение экологических показателей двухтактного двигателя за счет организации интенсивного смесеобразования и увеличения продолжительности сгорания.

Изобретение относится к машиностроению, а именно к двигателестроению. Двигатель (1) внутреннего сгорания с утилизацией теплоты отработавших газов содержит лопаточный завихритель, поверхность которого образована вращением относительно оси и перемещением вдоль нее образующей, пересекающей внутренний диаметр канала таким образом, что след от пересечения этой образующей с поверхностью канала образует винтовую линию, исполненную в соответствии с уравнением лемнискаты Бернулли, обладающей свойством безотрывного течения потока.

Предлагаются способы и системы внутрицилиндровой регенерации тепловой энергии, работающие с циклом Ранкина, для извлечения энергии из отработавших газов, которую можно использовать для производства дополнительной работы в транспортном средстве. В одном из примеров способ может включать оснащение зоны головки каждого цилиндра двигателя массивом труб, содержащим одну или несколько труб, проходящих через камеру сгорания соответствующего цилиндра.

Изобретение относится к области машиностроения, в частности к системе комбинированного пневмодвигателя замкнутого контура с внешним источником тепла. Система включает комбинированный с компрессором пневмодвигатель 1, включающий цилиндропоршневую группу, а также головку блока цилиндра с системой впускного и выпускного коллекторов 2 и 3 с клапанным механизмом, а также поршневой блок воздушного компрессора, приводимый в движение узлами пневмодвигателя 1, включающий узел впуска 4 и узел 5 выпуска рабочей среды.
Наверх