Дозиметры (G01T1/02)
G01T1/02 Дозиметры ( G01T1/15 имеет преимущество; измерение времени экспозиции при облучении рентгеновскими лучами H05G1/28)(65) 
Изобретение относится к дозиметрии ионизирующих излучений. Способ дозиметрии фотонных и корпускулярных ионизирующих излучений включает измерение концентраций парамагнитных центров, созданных при облучении ионизирующим излучением чувствительного вещества детектора, выполненного в форме цилиндра, методом электронного парамагнитного резонанса, при этом в качестве чувствительного вещества детектора используют сополимер тетрафторэтилена и этилена, имеющий структурную формулу (CF2-CF2-CH2-CH2)n, с размерами диаметра 5 мм и высотой 1 мм.

Изобретение относится к области регистрации радиоактивных излучений. Радиационный монитор содержит блок детектирования, при этом блок детектирования содержит пропорциональный счетчик нейтронов на основе 3Не, помещенный в полиэтилен, окруженный слоем кадмия толщиной 1-1,5 мм, соединен с зарядочувствительным усилителем и высоковольтным блоком питания, зарядочувствительный усилитель соединен с дискриминатором нижнего уровня, который соединен с пиковым детектором, который соединен с микропроцессором и аналого-цифровым преобразователем, выход блока детектирования соединен с блоком питания и управления.

Изобретение относится к медицине. Мобильная конструкция для крепления узлов рентгенодиагностического и флюорографического цифрового аппарата выполнена в виде Т-образной разборной конструкции, содержащей подвижную платформу с колонной с подъёмным и поворотным механизмами траверсы, механизмом регулирования угла поворота траверсы; а также закрепленные на траверсе с двух противоположных сторон площадку крепления рентгеновского излучателя и ионизационной камеры с элементами крепления и корпус для крепления рентгеновского детектора; пульт управления.

Изобретение относится к области регистрации радиоактивных излучений. Способ определения эффективной толщины сцинтиллятора радиационного монитора, регистрирующего γ-излучение, заключается в том, что строят зависимость коэффициента от толщины сцинтиллятора h, определяют наибольшее превышение полезного сигнала над фоном, который соответствует эффективной толщине сцинтиллятора, при этом определяют функцию отклика сцинтиллятора R(E), нормированного на один γ-квант с энергией E, рассчитывают число зарегистрированных импульсов N в энергетическом диапазоне от E1 до E2 согласно выражению для фонового излучения и источника с использованием энергии γ-линии E и квантового выхода .

Изобретение относится к области пассивной твердотельной дозиметрии смешанных гамма-нейтронных полей. Способ регистрации доз в смешанных гамма-нейтронных полях излучений содержит этапы, на которых сначала детектор облучают эталонными полями гамма-излучения, после чего помещают его в приемную катушку спектрометра ядерного магнитного резонанса (ЯМР), производят измерение в режиме накопления от 1 до 50 спектров в течение 1-5 минут, усредняют эти спектры по усредненным для каждого детектора спектрам, строят градуировочную дозовую зависимость фактора формы спектра от поглощенной дозы гамма-излучения, после чего в приемную катушку спектрометра помещают детектор, облученный смешанным гамма-нейтронным полем, измерения повторяют с этим детектором, определяют фактор формы и наносят его значения на градуировочную дозовую зависимость, по отношению факторов форм, полученных при гамма-нейтронном облучении и известной дозой гамма-облучения, вычисляют их отношение, по полученному коэффициенту определяют суммарную дозу и вклад в нее нейтронной составляющей.

Изобретение относится к области измерительной техники, а именно к регистрации нейтронного излучения, и может быть использовано при обнаружении импульсного и непрерывного нейтронного излучения при обеспечении радиационной безопасности человека, обследовании различных объектов и территорий.

Изобретение относится к области измерительной техники и может быть использовано для регистрации мягкого рентгеновского излучения (МРИ) в лабораторных и полигонных экспериментах. Технический результат - повышение надежности работы вакуумного рентгеновского диода и технологичности обслуживания вакуумного рентгеновского диода в условиях проведения взрывных и лабораторных экспериментов.

Изобретение относится к области измерения ионизирующих излучений и касается способа дистанционного обнаружения радиоактивных веществ в полевых условиях на основе двухлучевого лазерно-индуцированного пробоя воздуха.

Группа изобретений относится к контейнеру дозиметра. Контейнер дозиметра содержит вмещающий участок для размещения измерительного устройства для измерения дозы заранее заданного излучения, кроме нейтронного излучения; и экранирующий участок, окружающий вмещающий участок и включающий в себя по меньшей мере спеченное тело с LiF, причем спеченное тело с LiF пропускает заранее заданное излучение, которое необходимо измерить измерительным устройством для измерения излучения, но блокирует нейтронное излучение, причем спеченное тело с LiF является спеченным телом с 6LiF, причем спеченное тело с 6LiF включает в себя 6LiF и имеет относительную плотность от 83% или более до 90% или менее, с уменьшенным возникновением трещин и/или блистеров на внешней поверхности.

Группа изобретений относится к способу измерения дозы посредством детектора излучения, в частности детектора рентгеновского излучения или гамма-излучения. Способ измерения поглощенной дозы заключается в том, что выбирают диапазон энергий и тип дозы Н, используют детектор излучения заданного типа, устанавливают измеренные детектором спектры для различного излучения заданного типа, энергии которого находятся в выбранном диапазоне энергий и соответствующие дозы известны, и устанавливают на основе этих спектров весовую функцию, которая определяет соответствие между средним приращением дозы и средней энергией, поглощенной детектором.

Изобретение относится к датчикам и устройствам для определения ионизирующих излучений и/или ионизирующих частиц. Изобретение представляет собой датчик ионизирующего излучения и/или ионизирующих частиц или устройство с таким датчиком, включающим в себя: первый электрод; два вторых электрода, размещенные около первого электрода; и вычитающий модуль, выполненный с возможностью получения и вывода сигнала, соответствующего разности электрических потенциалов и/или токов вторых электродов.

Группа изобретений относится к области измерительной техники, а именно к радиометрии фотонов, и может быть использована при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды.
Изобретение относится к области дозиметрии. Способ индивидуального дозиметрического контроля внутреннего облучения профессиональных работников на основе Байесовского подхода, который содержит: этап из серии индивидуальных измерений активности радионуклидов в биологических объектах; этап получения информации о пути и скорости поступления радионуклида в организм работника; этап определения физико-химических свойств радионуклида для периодов времени контроля с использованием априорных распределений параметров периода контроля; этап использования биокинетических моделей поведения радионуклида в организме условного работника в зависимости от физико-химических свойств, связанных с измеряемыми биологическими объектами; этап использования методики выполнения расчетов в компьютерной программе, ее реализующей.

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и парамагнитное вещества при следующих количественных соотношениях, мас.%: проба зубной эмали свиньи 80-87 связующее вещество 12,9-19,8 парамагнитное вещество 0,1-0,2, при этом в качестве пробы зубной эмали свиньи используют порошок с размерами крупинок от 0,1 мм до 0,3 мм.

Изобретение относится к области ядерного приборостроения и может быть использовано при создании измерителей мощности дозы гамма-излучения ядерной энергетической установки, размещаемой на космическом аппарате.

Использование: для проверки и градуировки радиометров и дозиметров при их массовом производстве. Сущность заключается в том, что устройство для градуировки и поверки дозиметров состоит из коромысла, стойки, на которой крепится заслонка, стойка опирается на конец коромысла, уравновешенного грузом, и шарнирно соединена со штангой, которая другим концом также шарнирно соединена с корпусом свинцового контейнера под определенным углом, обеспечивающим плотное примыкание заслонки к поверхности контейнера.

Изобретение относится к измерительной технике, а именно к дозиметрам и радиометрам, и может быть использовано в схемах и устройствах измерения интенсивности электромагнитных и ионизирующих излучений и/или индикации опасного уровня радиационного фона окружающей среды, а также накопленных уровней радиации, включая альфа, бета излучение, протоны, нейтроны, гамма и рентген диапазоны.

Изобретение относится к области измерений рентгеновского излучения, в частности относится к устройству индикации для осведомления о дозе для определения данных по индивидуальной дозе штатного сотрудника во время рентгеновского исследования диагностического или интервенционного типа представляющего интерес объекта.

Изобретение относится к техническим средствам, а именно к устройствам измерения дозы низкоэнергетического ионизирующего излучения в условиях открытого космического пространства во время орбитальных полетов летательных аппаратов вокруг Земли.

Изобретение относится к установке для обнаружения и запуска индикации доз излучения. .

Изобретение относится к области дозиметрии ионизирующих излучений и может быть использовано в радиационно-химической технологии и радиационных испытаниях для измерения поглощенных доз ионизирующих излучений.

Изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности. .

Изобретение относится к области измерения ионизирующих излучений, а именно гамма-излучения с применением газоразрядных счетчиков. .
Изобретение относится к ядерной физике и технике и может быть использовано при создании детекторов для контроля радиоактивности окружающей среды. .

Изобретение относится к способу измерения радиоактивности газов по альфа-излучению, в частности радиоактивности воздуха, содержащего радон и торон. .
Изобретение относится к ядерной физике и технике и может быть использовано для создания детекторов, контролирующих радиоактивность окружающей среды. .

Изобретение относится к области атомной техники, в частности к поглощающим нейтроны материалам для изготовления сердечников радионуклидных источников жесткого гамма-излучения высокой удельной активности.

Изобретение относится к технической физике, к технике измерений ионизирующих излучений и может быть использовано в медицине, а также для контроля облучения при выполнении работ, связанных с ионизирующим излучением.

Изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине и экологии, а именно к спетрометрии и дозиметрии ядерных излучений веществ (биопрепаратов, лекарств, продовольственных и промышленных изделий), Сущность изобретения состоит в том, что в устройстве измерения применено три полупроводниковых детектора разной толщины и из определенного материала, расположенных друг под другом, каждый из которых последовательно соединен с зарядочувствительным усилителем, компаратором, стречером-усилителем и аналого-цифровым преобразователем.

Изобретение относится к технической физики, а именно к устройствам для детектирования ионизирующих излучений, и предназначено для спектрометрии гамма-квантов и электронов высоких энергий. .

Изобретение относится к области дозиметрии ионизирующих измерений и может быть использовано в индивидуальных дозиметрах. .

Изобретение относится к технике дозиметрии и может использоваться, например, в наручных детекторах ионизирующего излучения . .

Изобретение относится к технике измерений ионизирующих излучений, более конкретно к способам дозиметрии. .

Изобретение относится к области ядерно-физического приборостроения и может быть использовано для дистанционной регистрации и исследования смешанных полей ионизирующих излучений , например нейтронного и гамма-излучения .

Изобретение относится к ядерной физике, а именно к дозиметрии ионизирующих излучений, и может быть использовано в индивидуальной, хронической и аварийной дозиметрии гамма-полей. .

Изобретение относится к технике измерения ионизирующих излучений и может быть использовано в области дозиметрии . .

Изобретение относится к области измерения ионизирующих излучений, а именно к устройствам индивидуального дозиметрического контроля. .